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1. Summary 
 
The Integrated Multi-Modal RF Sensing (IMMRF) project under the Multi-Yield Radio 
Frequency Countermeasures Investigations and Development (MYRIAD) contract for the Air 
Force Research Laboratory (AFRL) Sensors Directorate performed basic research to examine 
key parameters of integrated multi-modal RF sensor design and algorithm development.  Four 
Principal Investigators (PI) representing four different universities executed the program, with 
each PI being responsible for distinct but interrelated research areas.  Dr. Muralidhar 
Rangaswamy, Principal Electronics Engineer and Technical Advisor for the Radio Frequency 
Exploitation Branch of the AFRL Sensors Directorate (AFRL/RYAP) provided technical 
direction and collaboration throughout the project. 
 
Dr. Steven Kay from the University of Rhode Island was responsible for researching the 
Statistical Framework for the overall IMMRF project.  Algorithm Development and 
Implementation research was conducted by Dr. Lee Swindlehurst from the University of 
California, Irvine.  Dr. Antonia Papandreou-Suppappola from the Arizona State University 
investigated Tracking and Waveform Agility, and Dr. Ram Narayanan from the Pennsylvania 
State University led the Radar Test-Bed Development efforts.  Summaries of the results of these 
four research areas are presented below. 
 
In order to formulate a Statistical Framework for multimodal signal processing and distributed 
systems, we investigated several cases where the joint PDF is not completely known and propose 
the exponentially embedded family (EEF) to construct the unknown PDF. To obtain optimal 
performance, we require the joint PDF of the measurements from the sensors, which is not 
always available. Since the EEF is within the exponential family, it inherits many nice properties 
of the exponential family, and combines all the available information of the sensors from a 
statistical standpoint. Also, the maximum likelihood estimation is a convex optimization problem 
for the EEF due to the convexity of the cumulant generating function, which allows 
computationally efficient implementation of the EEF. 
 
The Algorithm Development and Implementation portion of the research focused on the 
problem of using multiple, spatially distributed, adaptive multi-modal sensors for multiple target 
tracking and data association. When left unmodeled or ignored, inherent field-of-view (FOV) 
limitations for each mode and sensor present a challenge to accurate tracking, appropriate sensor 
management, and system robustness. We propose a relatively simple variance-penalty oriented 
modeling solution that effectively presents the FOV as a new design parameter. A novel closed-
loop adaptive mode-parameter selection algorithm incorporating this penalty model is also 
proposed for use in both ideal and cluttered sensing environments. 
 
Under the Tracking and Waveform Agility portion of the IMMRF project, we investigated the 
asymmetrical multi-modal sensing system for tracking low observable targets using radio 
frequency (RF) radar and electro-optical (EO) sensors. We developed the particle filter (PF) 
based recursive track before detect (TBD) algorithm for joint RF-EO multi-modal tracking to 
avoid loss of information caused by matched filter thresholding at low SNR.  We also integrated 
the TBD approach with waveform-agile sensing as the TBD can directly incorporate the transmit 
waveform in its formulation. The waveform agility is achieved by optimally choosing waveform 
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parameters to minimize the predicted mean-squared error (MSE) of estimation in tracking. We 
integrated the embedded exponential family (EEF) approach into the TBD algorithm in order to 
approximate joint distributions of dependent RF-EO measurements to further improve tracking 
performance. The waveform-agile multi-modal experimental radar test-bed developed for this 
project was used to evaluate the proposed algorithms. Finally, we extended the TBD tracker to 
low observable multiple targets.  
 
For the Radar Test-Bed Development, we developed an adaptive multimodal radar sensor that is 
capable of progressively varying its range resolution depending upon the target scattering 
features. Low range resolution profiles are formed using a low bandwidth waveform. High range 
resolution processing is then performed on selected range cells in which targets are declared. 
Thus the multimodal radar has the ability to provide target indication with a large range extent 
and can progressively switch to a narrow range extent mode for extracting recognizable target 
features. The multimodal radar system developed consists of a test-bed that enables the 
generation of linear frequency modulated waveforms of various bandwidths for achieving the 
optimum resolution to image the target. Since bandwidth is a precious resource which can be 
used by multiple applications, the multimodal radar uses variable bandwidth, making it possible 
to share the remaining bandwidth with some other application. We explore bandwidth sharing 
scenarios between radar and communications by dividing the surveillance space into sectors and 
using fuzzy logic to arrive at priorities for each sector. Finally, we consider the problem of 
scheduling between tracking and surveillance for the multimodal radar. 
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2. Introduction 
 
In conjunction with the AFOSR sponsored Discovery Challenge Thrust (DCT) topic 1A 
“Integrated Multi-Modal Sensing, Processing, and Exploitation” in AFOSR-BAA-2007-08, the 
Air Force Research Laboratory Sensors Directorate, Radio Frequency Exploitation Branch 
(AFRL/RYAP), under the direction of Dr. Muralidhar Rangaswamy, conducted  research in 
Integrated Multi-Modal RF Sensing to support advanced radar signal processing and advanced 
algorithm development. The Integrated Multi-Modal RF Sensing (IMMRF) project was executed 
under the Multi-Yield Radio Frequency Countermeasures Investigations and Development 
(MYRIAD) contract. 
 
The objective of the IMMRF Sensing effort was to perform Basic Research to examine key 
parameters of integrated multi-modal sensor design and algorithm development.  A statistical 
framework for the program was developed, which ensured the overall statistical validity of the 
approaches and allowed all researchers to operate from a common probabilistic viewpoint.  
Dynamic waveform design for agile RF sensing, enhanced detection capabilities, and optimized 
tracking performance was investigated.  Approaches were developed for using multiple, spatially 
distributed, adaptive multi-modal sensors for multiple target tracking and data association, and a 
radar test bed was developed to support testing and refinement of theories and algorithms. 
 
Results for each of the four main research areas are presented in the following sections.  Detailed 
discussions of each research area are presented in Sections 3, 4, 5, and 6.  Section 3 presents the 
results of the Statistical Framework research, followed by a discussion of results in the area of 
Algorithm Development and Implementation in Section 4.  Tracking and Waveform Agility 
research topics are addressed in Section 5, while a detailed presentation of the Radar Test-Bed 
Development portion of the project is given in Section 6.  Conclusions and References are 
included at the end of the report. 
 
Four Principal Investigators (PI) representing four different universities executed the program, 
with each PI being responsible for distinct but interrelated research areas. 
 
Dr. Muralidhar Rangaswamy, Principal Electronics Engineer and Technical Advisor for the 
Radio Frequency Exploitation Branch of the AFRL Sensors Directorate (AFRL/RYAP) provided 
technical direction and collaboration throughout the project. 
 
Dr. Steven Kay from the University of Rhode Island was responsible for researching the 
Statistical Framework for the overall IMMRF project. Algorithm Development and 
Implementation research was conducted by Dr. Lee Swindlehurst from the University of 
California, Irvine. Dr. Antonia Papandreou-Suppappola from the Arizona State University 
investigated Tracking and Waveform Agility, and Dr. Ram Narayanan from the Pennsylvania 
State University led the Radar Test-Bed Development efforts.   
 
Fundamental mathematical and scientific challenges include: 
 

(1) Development of high fidelity models to account for the combined RF sensor 
phenomenology. 
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(2) Simulation capability for generating representative scenarios. 
(3) Innovative mathematical approaches for joint processing of RF data for the problems of 

target detection, tracking, and classification. 
(4) Sophisticated optimization techniques to handle ill-posed inverse problems due to the 

large dimensionality, multi-modality, and multi-functionality requirements (overcoming 
the statistical curse of dimensionality).  

(5) Advanced signal and data processing methods, which exploit inherent data characteristics 
to reduce the training data support and computational cost.  

(6) Novel adaptive processing techniques to deal with non-stationary training data underlying 
non-side-looking collection geometries, which are not native to conventional radar 
system operations. 

(7) Adaptive processing on both transmit and receive to maximize system performance; 
instead of fixed mode sensing, make the sensor adapt to its environment. 

(8) Performance analysis with simulated and measured data using a variety of new statistical 
metrics. 

(9) Validation through an experimental test-bed and hardware recommendations. 
 
The proposed effort addressed the above issues in a systematic manner in the context of joint, 
multi-modal detection, tracking and classification through the development of novel 
mathematical and computational methods to overcome the statistical curse of dimensionality. 
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3. Statistical Framework 
 
Multimodal signal processing and distributed systems have many applications such as radar, 
sonar, CRBN detection and classification, medical diagnosis, weather prediction, and financial 
analysis. To obtain optimal performance, we require the joint PDF of the measurements from the 
sensors, which is not always available. 
 
3.1. Methods, Assumptions, and Procedures 
 
In order to formulate a statistical framework for multimodal signal processing and distributed 
systems, we investigated several cases where the joint PDF is not completely known and propose 
the exponentially embedded family (EEF) to construct the unknown PDF. To obtain optimal 
performance, we require the joint PDF of the measurements from the sensors, which is not 
always available. Since the EEF is within the exponential family, it inherits many nice properties 
of the exponential family. For example, the measurements from the sensors form a sufficient 
statistic for the EEF. The EEF combines all the available information of the sensors from a 
statistical standpoint. Also, the maximum likelihood estimation is a convex optimization problem 
for the EEF due to the convexity of the cumulant generating function, which allows 
computationally efficient implementation of the EEF. 
 
First, we consider the case when the joint PDF is unknown but the marginal PDFs are known. 
This usually happens when the dimensionality of the sample space is high and we do not have 
enough training samples to have an accurate estimate of the joint PDF. The problem is 
exacerbated by onerous environmental and systems constraints in radar and sonar applications. 
This is also recognized as the “curse of dimensionality” in pattern recognition and machine 
learning. Hence, it is important to efficiently approximate the unknown joint PDF using limited 
training data. One common approach is to assume that the measurements from different sensors 
are conditionally. This approach has been widely used due to its simplicity, since the joint PDF is 
then the product of the marginal PDFs. This is also known as the “product rule” in combining 
classifiers. In spite of its popularity, the independence assumption may not be a good one if the 
measurements are actually correlated. Hence researchers have studied other methods that 
consider the correlation among the measurements. However, the problem does not have a unique 
solution when the data is non-Gaussian. We propose the EEF that uses the marginal PDFs to 
estimate the joint PDF that is asymptotically closest to the true one in Kullback-Leibler (KL) 
divergence. 
 
Note that the above methods all require the knowledge of marginal PDFs. Furthermore, we 
consider the case when the marginal PDFs are not available or accurate, which can happen due to 
a high-dimensional sample space and insufficient training data. We present a new way of 
constructing the joint PDF without the knowledge of marginal PDFs but only a reference PDF. In 
our method, this reference PDF is the PDF under the null hypothesis, and we assume it is 
completely known. The constructed joint PDF takes the form of the exponential family and 
incorporates all the available information. Based on moment matching, the parameters in the 
constructed joint PDF are equivalent to the maximum likelihood estimator (MLE) of the 
unknown parameters of the exponential family. Hence they can be easily found via convex 
optimization based on the properties of the exponential family. Since there is no Gaussian 
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distribution assumption on the reference PDF, this method can be very useful when the 
underlying distributions are non-Gaussian. 
 
Finally, the EEF is applied to robust signal detection. We examine the case when the alternative 
hypothesis has multiple candidate models, and apply the multimodal sensor integration technique 
based on the EEF to detection. It is shown that the EEF is asymptotically optimal as it converges 
to the true underlying model. 
 
For all the different cases above, simulation results show that the EEF requires less information 
compared to existing methods but attains comparable performance. 
 
3.2. Exponentially Embedded Families for Multimodal Sensor Processing 
 
The exponential embedding of two or more probability density functions is proposed for 
multimodal sensor processing. It approximates the unknown PDF by exponentially embedding 
the known PDFs. Such embedding is of an exponential family indexed by some parameters, and 
hence inherits many nice properties of the exponential family. It is shown that the approximated 
PDF is asymptotically the one that is the closest to the unknown PDF in Kullback-Leibler (KL) 
divergence. Applied to hypothesis testing, this approach shows improved performance compared 
to existing methods for cases of practical importance where the sensor outputs are not 
independent. 
 
3.2.1. Introduction 
 
Distributed detection systems have many applications such as radar and sonar, medical 
diagnosis, weather prediction, and financial analysis. To obtain optimal performance, we require 
the joint PDF of the sensor outputs, which is not always available. One common approach, 
discussed in [1], [2], is to assume that the PDFs of the sensor outputs are independent, and hence 
the joint PDF is the product of the marginal PDFs. However, this assumption may not be 
satisfied since the sensor measurements could be correlated due to the common source and the 
relative sensor locations. The correlation is noticed in [3], [4], where a copula based framework 
is proposed to estimate the joint PDF from the marginal PDFs. In this work, we approximate the 
joint PDF by exponentially embedded families (EEFs) in the sense that it asymptotically 
minimizes the KL divergence of the true PDF and the estimated one. For two PDFs 1p  and 0p , 

the KL divergence is defined as  
 
 1

1 0 1
0

( )
( || ) ( ) ln

( )

p
D p p p d

p
 

x
x x

x
 (1) 

 
It is always nonnegative and equals zero if and only if 1 0p p  almost everywhere. The KL 

divergence is a measure of the asymptotic performance of binary hypothesis testing by Stein’s 
lemma [5]. 
 
The term “exponentially embedded families” follows that in [6], where it is used for model order 
estimation. The embedded PDF is of an exponential family indexed by one or more parameters, 
and so has many nice properties of that family. In a differential geometry point of view, the EEF 
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forms a manifold in log-PDF space. In one-dimensional case, the EEF is the PDF that minimizes 

0( || )D p p  with the constraint that 0 1( || ) ( || )D p p D p p    [5], [7]. Here we focus on the 

problem of binary hypothesis testing. We assume the presence of two sensors. Similar results are 
obtained for multiple hypothesis testing and multiple sensors. 
 
3.2.2. The EEF and Its Properties 
 
Assume that a source produces the underlying samples x  which are unobservable, and we have 
two sensors whose outputs are the statistics 1( )t x  and 2 ( )t x  of x . Consider the binary 

hypothesis testing problem where we know the reference PDF, 0( )p HX x , but not 1( )p HX x . So 

we can find the joint PDF 
1 2 1 2 0( )p H  T T t t , but do not know 

1 2 1 2 1( )p H  T T t t . We assume that the 

marginal PDFs 
1 1 1( )p HT t  and 

2 2 1( )p HT t  are known. So the problem is to test between 0H  and 

1H  where we know the joint PDF under 0H  and the marginal PDFs under 1H . The EEF is 

defined as  
 
  

    
    

 
    

    

1 2
1 1 2 11 2

1 0 2 01 2

1 2
1 1 2 11 2

1 0 2 021

( ) ( )

0( ) ( )

( ) ( )

0( ) ( )

( )

fT

p H p H

p H p H

p H p H

p H p H

p H
p

p H d

 

 

 

 

 

 


 



T T

T T

T T

T

t x t x

Xt x t x

X
t x t x

Xt x t x

x
x

x x
 (2) 

 

where 1 2

T   
     are the embedding parameters with the constraints  

 
1 2 1 20 1{ } S              (3) 

 
Notice that ( )p X x  does not require the knowledge of 1( )p HX x . So in practice, we just need 

to estimate 0( )p HX x  and only the PDFs of 1T  and 2T  under 1H  from training data (see also 

[8]). The reason why we have the constraints in (3) will be explained later. The next theorem is 
an extension of Kullback’s results [5], [7]. 
 

Theorem  The PDF of x  as in (2) is the one that minimizes  0( ) ( )D p p HX Xx x  subject to the 

constraints that  
    0 1( ) ( ) ( ) ( )

i i i ii i i i iD p p H D p p H    T T T Tt t t t  (4) 

 
for 1 2i   , where 

1 1( )pT t  and 
2 2( )pT t  are the PDFs of 1T  and 2T  corresponding to ( )pX x . 

Proof. Since  
 
      

 
1

0 1
0

( )
( ) ( ) ( ) ( ) ( ) ln for 1 2

( )
i

i i i i

i

i
i i i i

i

p H
D p p H D p p H p d i

p H


     

 T
T T T T X

T

t x
t t t t x x

t x
(5)

 
using Lagrange multipliers for the minimization gives  
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  

 
 

 
 

1 1 2 11 2

0 1 0 2 01 2

( ) ( )( )
1 2 3( ) ( ) ( )

    ( )

( ) ln ( ) ln ( ) ln ( )
p H p Hp

p H p H p H

J p

p d p d p d p d   

        T TX

X T T

X

t x t xx
X X X Xx t x t x

x

x x x x x x x x
(6)

 
 

Differentiating with respect to ( )pX x  and setting to 0 , we have  

 
  

 
 
 

1 1 2 11 2

0 1 1 0 2 02

( ) ( )( )
1 2 3( ) ( ) ( )

ln 1 ln ln 0
p H p Hp

p H p H p H
   

      T TX

X T T

t x t xx
x t x t x  (7) 

 
Solving this equation and letting 1 1    and 2 2   , the ( )pX x  that minimizes 

 0( ) ( )D p p HX Xx x  is of the form as in (2) where 1ta  and 2  are chosen to meet the 

constraints. 
 
 
By letting  
 
  

    
    

1 2
1 1 2 11 2

1 0 2 01 2

( ) ( )

0( ) ( )
( ) ln

p H p H

p H p H
K p H d

 
  

   T T

T T

t x t x

Xt x t x
x x  (8) 

 
 
  

 
 
 

1 2

1 2

1 2

1 1 2 1

1 0 2 0

( ) ( )
( ) ln ( ) ln

( ) ( )

p H p H
l l

p H p H

 
  

 
T T

T T
T T

t x t x
x x

t x t x
 (9) 

 
Equation (2) can be written as  
 
      

1 21 2 0( ) exp[ ln ( )]p l l K p H        X T T Xx x x x  (10) 

 
which is a two-parameter exponential family [9].  K   is recognized as the cumulant generating 

function of 
1
( )lT x , 

2
( )lT x  when the PDF of x  is 0( )p HX x . Since (10) is of an exponential 

family, the EEF inherits some useful properties that we will discuss in the following (refer to [9], 
[10] and [11] for details).  
 

1) If the PDF of x  is ( )p X x , then the joint PDF of 1T  and 2T  is [11]  

 
  

1 2 1 2 1 21 2 1 2 1 2 0( ) exp[ ln ( )]p l l K p H           T T T T T Tt t t t  (11) 

 
where  
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  
 

 
 

1 2

1 2

1 2

1 1 2 1

1 0 2 0

ln ln
p H p H

l l
p H p H

 
  

 
T T

T T
T T

t t

t t
 (12) 

 
This can also be easily proved using surface integral techniques [12]. Notice that for (11), 1T  and 

2T  are not independent unless they are independent under 0H .  

 
2)  K   is convex by Holder’s inequality [9]. If we assume that 

1
lT  and 

2
lT  are linearly 

independent [13], then   is identifiable, and hence  K   is strictly convex [10].  

 

3) Let 
i

E l
 
 
 
 T  be the expected value of 

i
lT  for 1 2i    and C  be the covariance matrix 

of 
1 2

T
l l
 
 
 
 
T T  when x  is distributed according to ( )p X x . We have  

 
 ( )

i

i

K
E l




 
 
 
 




 T  (13) 

 
 

 2 2

2
1 1 2

2 2

2
2 1 2

( ) ( )

( ) ( )

K K

K K

 
  

 
  

  
     
  
 
   

C  (14) 

 
 
Notice that (14) also shows that  K   is convex. 

 

4) 
1 2

T
l l
 
 
 
 
T T  is a minimal and complete sufficient statistic for  . Hence 

1 2

T
l l
 
 
 
 
T T  can be 

used to discriminate between 1( )p HX x  and 0( )p HX x .  

 
5)  K   is finite on S . To see this,  K     by definition. Obviously,   0K    for 

     0 0 1 0 0 1
T T T      . Since  K   is strictly convex, we have   0K      for S . But 

when   is outside S , there is no guarantee that  K   is finite in general. This explains why we 

have the constraints in (3).  
 
3.2.3. EEF for Hypothesis Testing 
 
For binary hypothesis testing, we will decide 1H  if  
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0

( )
ln

( )max
p

p H

 






X

X

x

x
 (15) 

 
where   is a threshold. This test statistic actually does not depend on x  but only on 1t  and 2t  

since  
 
 

1 21 2
0

( )
( ) ln ( )

( )

p
g l l K

p H

   
   


X

T T
X

x

x
 (16) 

 
The reason why we choose this test statistic, as we will show next, is that asymptotically 

( )max p 


X x  is the closest to the unknown 1( )p HX x  in KL divergence. 

 
Assume that there are a large number of independent and identically distributed (IID) 
unobservable ix ’s for 1 2 …i N    , which results in IID 1it ’s and IID 2it ’s. We want to 

maximize  
 
 

1 20

( )1 1 1
1 2( )

1 1 1

ln exp ( )i

i ii

N N N
p

N p H N N
i i i

l l K   


  

     
  X

X

x

T Tx  (17) 

 
By the law of large numbers, under 1H   

 
    

   

1 1 1 1 1

2 2 22 1

1
1 1 1 0

1

1
2 1 2 0

1

||

||

i

i

N

HN
i

N

HN
i

l E l D p H p H

l E l D p H p H

 
 
 
 

 
 
 
 

 
 
 



 
 
 



   

   





T T T T

T T TT

t t

t t
 (18) 

 
as N  . So we are asymptotically maximizing  
 
        

1 1 2 21 1 1 1 0 2 2 1 2 0|| || ( )D p H p H D p H p H K     
   
   

     T T T Tt t t t  (19) 

 
Since  
 
 

1 2

1 1
1 2

0

( ) ( )
ln ( ) ln

( ) ( )

p H p H
l l K

p p H
  


 

    
 

X X
T T

X X

x x

x x
 (20) 

 
the KL divergence between 1( )p HX x  and ( )p X x  is  
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  

       
   

1

1 1 2 0

1 1 2 2

1

( )
1 2 ( )

1 1 1 1 0 2 2 1 2 0

1 0

( ) ( )

exp ( ) ln

|| ||

   ( ) ||

p H
H p H

D p H p

E l l K

D p H p H D p H p H

K D p H p H



  

 






   
   
   

 
 
 

 

      

      

   

X

X

X X

x
T T x

T T T T

X X

x x

t t t t

x x

 (21) 

 

This shows that  1( ) ( )D p H p  X Xx x  is minimized by maximizing (19). A similar result is 

shown in [6] by using a Pythagorean-like theorem. Also if 1T  and/or 2T  are sufficient statistics 

for deciding between 0H  and 1H , it can be shown that 1( ) ( )p p H  X Xx x . Thus, the true PDF 

under 1H  is recovered [14]. 

 

To implement (15), we require the maximum likelihood estimate (MLE) of  . Let   be the 

MLE of   without constraints in (3). Since  g   is strictly concave,   is unique. Taking 

partial derivatives of  g   and setting to 0 , we have  

 
 

1 21 2

( ) ( )K Kl l 
 

  

 
     T T  (22) 

 
Let   be the MLE of   with the constraints. If   is in the constraint set S , then   . 

Otherwise,   is unique and is on the boundary of S  since  g   is strictly convex and S  is 

convex also [15], and hence we could simply search the boundary of S  to find  . 
 
3.2.4. Example 
 
Since only 1T  and 2T  are used in hypothesis testing, we only need to specify their distributions. 

Consider the case when 1T  and 2T  are scalars (will write them as 1T  and 2T ) with distributions  

 
 

01 2
0

02

10
~ under

10

T
N H

T






 
 
 
 
 

   
   

    
 (23) 

 
 

 
1 1 12

1
2 2 1

1
~ under

1

T A
N H

T A






   
   
   
   
   

  
  

  
 (24) 

 
where 0  is known but 1  is unknown (we do not need the joint PDF of 1T  and 2T  under 1H ).  

 
We have  
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 
 

0 1 2

2 2
1 1 1 2 2 2

2 20

2 2
1 2 1 1 1 2 2 2

2 2 2
0

1 2

2 2
1 22 2

1 22 2

( ) ln exp

ln exp

ln exp

H T T

t A A t A A
H

A A t A t A
H

K E l l

E

E

 

 
  

  

 

 

  
  
  
   

 



 

  
  

      

 (25) 

 
 

Let 1 1 2 2
2 2

TA A 
 

      and 1 2

T
t t 
   t , then  

 
  

0 0

1 1 1 2 2 2
02

1
exp exp exp

2
T T

H H

t A t A
E E

   


                 
t C  (26) 

 

where 02
0

0

1

1





 

  
 

C  and hence  

 
 2 2

1 2
1 2 02 2

1
( )

2 2 2
TA A

K    
 

    C  (27) 

 
So  
 
 

1 2

2 2
1 1 1 2 2 2

2 2

1 1 1 2 2 2
2 2

1 2

2 2
1 22 2

1
02

1
02

( ) ( )

( )

T T

t A A t A A

A t A t T

TT

g l l K

K
 

 
 

   

  



 

 

  

  

  

 

C

t C

 (28) 

 
Differentiating and setting to 0 , the global maximum is found at  
 
 1 0 2

2
0

2 0 1
2
0

11
0

1

t t

t t










 





 
  
 
 

C t  (29) 

 
or  
 
 2

1 0 2
2

1 0

2
2 0 1

2
2 0

( )

(1 )

( )

(1 )

t t

A

t t

A

 


 











 
   
  

 (30) 
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If S , then we decide 1H  if 1
0( ) Tg   t C t , otherwise we search   on the boundary and 

decide 1H  if ( )g   . 

 

When we observe N  IID 1it ’s and IID 2it ’s, then it easily extends that by (17), 1 2

T
t t 
    is 

replaced by the sample mean 1 1
1 21 1

]
N N T

i iN Ni i
t t




 
  , and everything else remains the same. 

 
3.2.5. Simulation Results 
 
For the above example, we set 20N  , 1 0 3A   , 2 0 35A   , 2 1  , 0 0 6    and 1 0 7   . We 

compare the EEF approach with the clairvoyant detector ( 1  is known, its performance is an 

upper bound), the detector assuming independence of 1t  and 2t , and the copula based method. 

The copula method estimates the linear correlation coefficient 1  using a non-parametric rank 

correlation measure, Kendall’s  . We use the Gaussian copula as in [3]. The simulation is 
repeated for 5000 trials. The receiver operating characteristic curves (ROC) are plotted. As seen 
in Figure 1, the EEF is only poorer than the clairvoyant detector, and performs better than the 
other two methods. 
 
 

 
 

Figure 1. ROC Curves for Different Detectors. 
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3.3. Sensor Integration by Joint PDF Construction Using the EEF 
 
In this section, we investigate the problem of sensor integration to combine all the available 
information in a multi-sensor setting from a statistical standpoint. Specifically, we propose a 
novel method of constructing the joint probability density function (PDF) of the measurements 
from all the sensors based on the exponential family and small signal assumption. The 
constructed PDF only requires knowledge of the joint PDF under a reference hypothesis and 
hence is useful in many practical cases. Examples and simulation results show that our method 
requires less information compared to existing methods but attains comparable detection and 
classification performance. 
 
3.3.1. Introduction 
 
Distributed systems and information fusion have been widely studied and used in engineering, 
finance, and scientific research. Such applications are to radar, sonar, biomedical analysis, stock 
prediction, weather forecasting, and chemical, biological, radiological, and nuclear (CBRN) 
detection, to name a few. If the joint probability density function (PDF) under each candidate 
hypothesis is known, we would easily obtain the optimal performance by the Neyman-Pearson 
rule (from the frequentist inference) for detection (binary hypothesis testing) or by the maximum 
a posteriori probability (MAP) rule (from the Bayesian inference) for both detection and 
classification (multiple hypothesis testing) [16]. However in practice, this information may not 
be available. This usually happens when the dimensionality of the sample space is high and we 
do not have enough training samples to have an accurate estimate of the joint PDF. The problem 
is exacerbated by onerous environmental and systems constraints in radar and sonar applications. 
This is also recognized as the “curse of dimensionality” in pattern recognition and machine 
learning. Hence, it is important to efficiently approximate the unknown joint PDF using limited 
training data. One common approach is to assume that the measurements from different sensors 
are conditionally independent [17], [18]. This approach has been widely used due to its 
simplicity, since the joint PDF is then the product of the marginal PDFs. This is also known as 
the “product rule” in combining classifiers [19]. In spite of its popularity, the independence 
assumption may not be a good one if the measurements are actually correlated. Furthermore, as 
stated in [19], the product rule is severe because “it is sufficient for a single recognition engine to 
inhibit a particular interpretation by outputting a close to zero probability for it”. Hence 
researchers have studied other methods that consider the correlation among the measurements. 
However, the problem does not have a unique solution when the data is non-Gaussian. A copula 
based framework is proposed in [20], [21] to construct the joint PDF. The exponentially 
embedded families (EEFs) are used in [22] to estimate the joint PDF that is asymptotically 
closest to the true one in Kullback-Leibler (KL) divergence. 
 
Note that the above methods all require the knowledge of marginal PDFs. In this paper, we 
consider the case when the marginal PDFs are not available or accurate, which can happen due to 
a high-dimensional sample space and insufficient training data. We present a new way of 
constructing the joint PDF without the knowledge of marginal PDFs but only a reference PDF. In 
our method, this reference PDF is the PDF under the null hypothesis 0H , and we assume it is 

completely known. The constructed joint PDF takes the form of the exponential family and 
incorporates all the available information. Based on moment matching, the parameters in the 

Approved for public release; distribution unlimited



   

  15  
 

constructed joint PDF are equivalent to the maximum likelihood estimator (MLE) [23] of the 
unknown parameters of the exponential family. Hence they can be easily found via convex 
optimization based on the properties of the exponential family. Since there is no Gaussian 
distribution assumption on the reference PDF, this method can be very useful when the 
underlying distributions are non-Gaussian. We start with the detection problem, and then extend 
our method to the classification problem. For detection, it is shown that under some conditions, 
our detection statistics are the same as the clairvoyant generalized likelihood ratio test (GLRT). 
For classification, our classifier also has the same performance as the estimated MAP classifier. 
Both the clairvoyant GLRT and the estimated MAP classifier assume that the true PDFs under 
each candidate hypothesis are known except for the usual unknown parameters. 
 
Problem Statement 
 
Consider the distributed detection/classification problem when we observe the outputs of two 
sensors, 1( )T x  and 2 ( )T x , which are transformations of the underlying samples x . The latter are 

unobservable at the central processor as shown in Figure 1. We choose two sensors for 
simplicity. All the results in this paper are valid for multiple sensors. For detection, we want to 
distinguish between two hypotheses 0H  and 1H  based on the outputs of the two sensors, and for 

classification, we have M  candidate hypotheses iH  for 1, 2, ,i M  . 

 
Assume that we have sufficient training data ( )

1 ( )nT x ’s and ( )
2 ( )nT x ’s under 0H , i.e., when there 

is no signal present. Hence, we have a good estimate of the joint PDF of 1T  and 2T  under 0H  

[9], and thus we assume 
1 2 1 2 0( )p H  T T t t  is completely known. Under 1H  for detection or iH  for 

1, 2, ,i M   for classification when a signal is present, we may not even have enough training 
data to estimate the marginal PDFs at each sensor, let alone the joint PDF. This is especially the 
case in the radar scenario, where the target is present for only a small portion of the time. So our 
goal is to use the available information to construct an appropriate 

1 2 1 2 1( )p H  T T t t  under 1H  for 

detection or 
1 2 1 2( )ip H  T T t t  under each iH  for classification. A simple illustration is shown in 

Figure 2. 
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Figure 2. Distributed Detection/Classification System with Two Sensors 

 
 
3.3.2. Joint PDF Construction by Exponential Family and Its Application in 
Distributed Systems 
 
First, we consider the detection problem, where we wish to construct 

1 2 1 2 1( )p H  T T t t . The result 

will then be extended to the classification problem. 
 
To simplify the notation, let  T = [T1  T2]

T  so that we can write the joint PDF 
1 2 1 2( )ip H  T T t t  as 

( )ip HT t  for 0 1i   . 

 
Since 1( )p HT t  cannot be uniquely specified based on 0( )p HT t , we will assume that 1) 

1( )p HT t  is close to 0( )p HT t  (small signal assumption), and 2) the expected value of T  under 

1H  or  1E T  is known. The reason that we assume small signal is because in practice, we are 

really interested in the small signal case, since for large signals, even a non-optimal detector 
would have acceptable performance. Now, we want to find a PDF ˆ ( )pT t  such that the KL 

divergence  
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  0
0

ˆ ( )
ˆ ˆ( ) ( ) ( ) ln

( )

p
D p H dp p

p H
  

 T
TT T

T

t
t t t t

t
 (31) 

 
is minimized with the constraint that  
    ˆ 1pE ET T  (32) 

 
Then the PDF ˆ ( )pT t  is used as our constructed PDF of T  under 1H . Note that the constraint in 

(32) is considered as moment matching, since the constructed PDF has the same moment as the 
true PDF. Here we consider the KL divergence because by Stein’s lemma [25], the KL 
divergence determines the asymptotic performance for detection. An extended result to 
classification has been recently presented in [26]. Therefore, this is a worst-case approach 
obtained by minimizing  0ˆ ( ) ( )D p Hp  TT t t .  

 
The Kullback theorem in [27] shows that the solution of the above problem is  
 
 

0ˆ ( ) exp ( ) ln ( )T K p Hp      TT t θ t θ t  (33) 

 
where  
    0 0( ) ln exp ln exp ( )T TK E p H d      Tt

θ θ T θ T t t  (34) 

 
is the cumulant generating function of 0( )p HT t , and it normalizes the PDF to integrate to one. 

Here θ  are not free parameters, and it has to satisfy the constraint in (32). It can be easily shown 
that  
 
  ˆ

( )
p

K
E





θ

T
θ

 (35) 

 

where 
1 2

( ) ( ) ( ) ( )…
p

T
K K K K

  
   
   

   
θ θ θ θ
θ  with p  being the length of θ . Therefore, the constraint in (32) 

is equivalent to  
 
  1

( )K
E





θ

T
θ

 (36) 

 
Note that in practice, we may not know  1E T , and therefore, we use t  as an estimate of  1E T

. Finally, the constructed PDF under 1H  is given by (33) where θ  satisfies  

 
 ( )K



θ

t
θ

 (37) 

 
Now suppose we have an exponential family parameterized by θ  as  
 

Approved for public release; distribution unlimited



   

  18  
 

 
0( ) exp ( ) ln ( )Tp K p H      T Tt θ θ t θ t  (38) 

 
which is the same as in (32) except that θ  are free parameters. It is also shown in [28] that 
families of PDFs with small statistical curvature enjoy, nearly, the good statistical properties of 
the EEF in (38). Since ( )K θ  is convex by Holder’s inequality [29], the MLE of θ  can be 

obtained by taking the derivative of ( )T Kθ t θ  with respect to θ  and setting it to zero. This 
results in  
 
 ( )K

 

θ

t 0
θ

 (39) 

 
which is identical to (37). Assume that ( )K θ  is strictly convex, and the solution is unique. 
Therefore, this shows that the MLE produces the same θ  as moment matching does in (37). 
Hence, we can write the constructed PDF ˆ ( )pT t  in (33) as  

 
   

0ˆ ( ) ( ) exp ( ) ln ( )
T

p K p Hp         T TT t t θ θ t θ t  (40) 

 

where θ  is the MLE of θ . Also note that since ( )K θ  is convex, finding the MLE becomes a 
convex optimization problem and many existing methods can be readily utilized [30], [31]. If 

0 , then the PDF in (38) becomes 0( )p HT t  or  

 
 

0( 0) ( )p p H  T Tt t  (41) 

 
This shows that 0( )p HT t  also belongs to the exponential family in (38). 

 
This constructed PDF in (40) looks similar to the Edgeworth expansion (see equations (2.1) and 
(2.17) in [32]). The Edgeworth expansion is an approximation of the cumulative distribution 
function (CDF) of the sum of IID samples starting from the CDF of the standard Gaussian 
distribution. Note that the PDF in (38) belongs to the exponential family. Since T  is a sufficient 
statistic for the exponential PDF in (38), this PDF incorporates all the information from the two 

sensors. Since 0( )p HT t  is required to construct ( )p T t θ , and it is assumed that 0( )p HT t  is 

available or it can be estimated with reasonable accuracy. Also note that if 1T , 2T  are 

statistically dependent under 0H , they will also be dependent for the constructed PDF under 1H . 

 
With the small signal assumption, 1( )p HT t  is close to 0( )p HT t . Under this constraint, it has 

been shown in [33] that if t  is the score function, i.e.,  
 
 ln ( )p



 



T

θ 0

t θ
t

θ
 (42) 
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by using a first order Taylor expansion on the log-likelihood function ln ( )p T t  about 0 , we 

obtain the same PDF as in (38). This small signal analysis is similar to the locally optimum 
detector (LOD) [34], but there are some fundamental differences between our method and the 
LOD: 

(i) Our method produces a PDF, not only a test statistic.  
(ii) t  need not be a score function for the constructed PDF to be a valid PDF. If it were, 
the constructed PDF in (38) could be interpreted as a first-order Taylor expansion and 
normalized to be a PDF.  
 

Finally, since (40) is the constructed PDF under 1H , we decide 1H  if  

 
 

 

0

( )
ln ( )

( )

Tp
K

p H


  


T

T

t θ
θ t θ

t
 (43) 

 
where   is a threshold. Note that Kullback also had similar ideas (see Chapter 5 in [27] where 
 ( )

T
Kθ t θ  can be considered as the estimated KL divergence between ( )p T t θ  and 0( )p HT t ).  

This method can be extended to the classification problem. Similar to (40), as shown in [35], we 
can construct the PDF of T  under iH  as  

 
   

0ˆ ( ) ( ) exp ( ) ln ( )
T

i i ii p K p Hp          T TT t θ t θ θ t θ t  (44) 

 
where  
  0( ) ln exp T

i iK E    θ θ T  (45) 

 
is the cumulant generating function of 0( )p HT t  that normalizes the constructed PDF, and 

( )ip T t θ  is considered as our estimate of ( )ip HT t  where  iθ  is the MLE of iθ . Hence similar to 

the MAP rule [1], we will decide iH  for which the following is maximum over i :  

 
 ˆ ( )

ˆ ( ) ( ) ( ) ( )
( )
i

ii i i

p H
H p H p p Hp

p


   TT

T

t
t t θ

t
 (46) 

 
When we assume that the prior probabilities of each candidate hypothesis are equal, i.e., 

1( ) ( ) 1Mp H p H M    , ( )ip H  cancels and we can equivalently decide iH  for which the 

following is maximum over i :  
 
 

 

0

( )
ln ( )

( )

Ti
i i

p
K

p H


 


T

T

t θ
θ t θ

t
 (47) 
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3.3.3. KL Divergence between the True PDF and the Constructed PDF  
 
The KL divergence is a non-symmetric measure of difference between two PDFs. For two PDFs 

1p  and 0p , it is defined as  

 
   1

1 0 1
0

( )
|| ( ) ln

( )

p
D p p p d

p
 

x
x x

x
 (48) 

 
It is well known that  1 0|| 0D p p   with equality if and only if 1 0p p  almost everywhere [27]. 

As we mentioned in Section 3.3.2 the KL divergence determines the asymptotic performance for 

both detection and classification. Next we will show that under 0H , 
0( ) ( )p p H  T Tt θ t  

asymptotically, and similarly under 1H , within the family of PDFs in (38), ( )p T t θ  is 

asymptotically the closest one to the true PDF in KL divergence. Similar results and arguments 
have been shown in [22], [36]. 
 
Assume that we observe IID ( )nT ’s with  
 
 ( )

( ) 1

( )
2

n
n

n

 
 
 
 
  


T

T
T

 (49) 

 

for 1,2, ,n L  . Shortening the notation, we will write  (1) ( 2) ( )

(1) (2) ( )

…
… ;L

Lp
  

  
T T T

t t t θ  as 

 (1) (2) ( )… ;Lp   t t t θ . The constructed PDF can be easily extended to (see (10))  

 
      (1) (2) ( ) ( ) (1) (2) ( )

01
… ; exp ( ) ln , , ;

LTL n L

n
p LK p H


        t t t θ t θ t t tθ   (50) 

 

where the MLE θ  is obtained by solving  
 
 ( )

1

1 ( )L
n

n

K

L 




 θ
t

θ
 (51) 

 
Now we consider two cases. First, for the true PDF under 0H , by the law of large numbers, it 

follows that  
 
 ( )

0
1

1
( )

L P
n

n

E
L 

 t T  (52) 

 
as L  . Note that  
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0

( )
( )

K
E




 θ 0

θ
T

θ
 (53) 

 
Since the solution of (51) is unique, asymptotically we have  
 
  θ 0  (54) 

 

and hence,    (1) (2) ( ) (1) (2) ( )
0

L Lp p H        t t t θ t t t  . 

 
Secondly, for the true PDF under 1H , by the law of large numbers, it follows that  

 
 ( )

1
1

1
( )

L P
n

n

E
L 

 t T  (55) 

 

as L  . Therefore, the MLE θ  asymptotically maximizes  
 
 

1( ) ( )T E Kθ T θ  (56) 

 

We will denote the underlying true PDF under 1H  as  (1) (2) ( )
1… Lp H   t t t  and the PDF within 

the exponential family in (38) as  (1) (2) ( )… Lp    t t t θ . Since from (18)  

 
  

 
 
 

(1) (2) ( ) (1) (2) ( )
1 1( )

(1) (2) ( ) (1) (2) ( )
1 0

… …
ln ( ) ln

… …

L LL
T n

L L
n

p H p H
LK

p p H

        
            


t t t t t t

θ t θ
t t t θ t t t

 (57) 

 
the KL divergence between the true PDF and the one in the exponential family is  
 
  

 
 

 

(1) (2) ( ) (1) (2) ( )
1

(1) (2) ( )
1( )

1 (1) (2) ( )
1 0

(1) (2) ( ) (1) (2) ( )
1 1 0

   ( ) ( )

…
( ) ln

…

( ) ( ) ( ) ( )

L L

LL
T n

L
n

T L L

D p H p

p H
E LK

p H

L E K D p H p H



        

                 
              



t t t t t t θ

t t t
θ t θ

t t t

θ T θ t t t t t t

 

 

 (58) 

 
Since 
 
  (1) (2) ( ) (1) (2) ( )

1 0( ) ( )L LD p H p H        t t t t t t   (59) 
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is fixed,  (1) (2) ( ) (1) (2) ( )
1( ) ( )L LD p H p        t t t t t t θ   is minimized by maximizing (56). This 

shows that given the exponential family in (38),  (1) (2) ( )… Lp    t t t θ  is asymptotically the 

closest to  (1) (2) ( )
1… Lp H   t t t  in KL divergence. 

 
3.3.4. Examples – Distributed Detection 
 
In this section, we compare our method with the clairvoyant GLRT for a specific detection 
problem. Since the true PDF does not necessarily belong to the exponential family in (8), for the 
clairvoyant GLRT, assume that we know the true PDF of T  under 1H  belongs to a family of 

PDFs parameterized by some unknown parameters α . Note that the θ  parameters in our method 
are constructed exponential PDFs, while α  are parameters in the true PDF. Therefore, the 
clairvoyant GLRT provides an upper bound on GLRT performance, and it decides 1H  if  

 
 

0

( )
ln

( )

p

p H





T

T

t α

t
 (60) 

 
 
Example - Partially Observed Linear Model with Gaussian Noise 
 
Suppose we have the linear model with 
 
  x Hα w  (61) 
 
with  
 
 

0

1

H

H

 

 

α 0

α 0
 (62) 

 
where x  is an 1N   vector of the underlying unobservable samples, H  is an N p  observation 
matrix with full column rank, α  is an 1p  vector of the unknown signal amplitudes, and w  is 

an 1N   vector of white Gaussian noise samples with known variance 2 . We observe two 
sensor outputs  
 
 

1 1( ) TT x H x  (63) 

 
 

2 2( ) TT x H x  (64) 

 
where 1H  is 1N q  and 2H  is 2N q . Note that 1 2

 
  H H  does not have to be H . This model is 

called the partially observed linear model. 
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Let 1 2
 
  G H H . We assume that G  has full column rank so that there is no perfectly redundant 

measurements of the sensors. Then we have  
 
 

1 1

2 2

( )

( )

T
T

T

  
    
   

T x H x
T G x

T x H x
 (65) 

 
Thus, T  is also Gaussian and  
 
  2

0~ 0 underTN HT G G  (66) 

 
Let 1 2q q q  , and we can see that T  is 1q . As a result, we construct the PDF as in (38) with  

 
   2

0

1
( ) ln exp

2
T T TK E    θ θ T θ G Gθ  (67) 

 
Hence the constructed PDF is  
 
 

 
 

12 2

0

1

2
2

2

( ) exp ( ) ln ( )

1 1
            exp exp

2 22 det
q

T

T T T

T

p K p H






 
 
 

      
          
 

T T

T T

t θ θ t θ t

t G G t
θ t θ G Gθ

G G

 (68) 

 
which can be simplified to  
 
  2 2

1~ underT TN H T G G G G  (69) 

 
Note that θ  is the vector of the unknown parameters in the constructed PDF, and it is different 
from the truly unknown parameters α . From (37) and (67), the MLE of θ  satisfies  
 
 2( ) TK 

 

θ

t G Gθ
θ

 (70) 

 
So  
 
    1

2

1 T




θ G G t  (71) 

 
and the test statistic becomes  
     1

2

1
( )

2

T
T TK




 θ t θ t G G t  (72) 
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Next we consider the clairvoyant GLRT. It is defined as the GLRT when the true PDF of T  
under 1H  is known except for the underlying unknown parameters α . It is considered as the 

suboptimal test by plugging the MLE of α  into the true PDF parameterized by α . Since the 
constructed PDF may not be the true PDF, the clairvoyant GLRT requires more information than 
our method. From (65) we know that the true PDF is  
 
  2

1~ underT TN HT G H G G  (73) 

 
Note that (69) is the constructed PDF while (73) is the true PDF. For small signal, they are 
equivalent since their means are close to zero and they have the same covariance matrix. This 
verifies that our method works for the small signal case. We need to estimate θ  in (69) or α  in 
(73) to implement the PDF. We write the true PDF under 1H  as ( )p T t . The MLE of α  is found 

by maximizing the true PDF given by (73)  
 
        1 1

2 2

( ) 1 1
ln

( ) 2 2

TT T T T Tp

p  
 

    


T

T

t α
t G Hα G G t G Hα t G G t

t 0
 (74) 

 

If q p , i.e., the length of t  is less than or equal to the length of α , then the MLE α  may not 

be unique. However, since      1
0

TT T T
  t G Hα G G t G Hα , we could always find α  such 

that Tt G Hα  and hence      1
0

T
T T T

  t G Hα G G t G Hα . Hence the clairvoyant GLRT 

statistic becomes  
 
 

  1

2
0

( ) 1
ln

( ) 2
T Tp

p H 





T

T

t α
t G G t

t
 (75) 

 
which is the same as our test statistic (see (72)) when q p .  
 
If q p , it can be shown that  
 
      

11 1T T T T T
 

α H G G G G H H G G G t  (76) 

 
and the clairvoyant GLRT statistic becomes  
 
 

       
11 1 1

2
0

( )
ln

( ) 2

p

p H 

  






T T T T T T T T

T

T

t G G G H H G G G G H H G G G tt α

t
 (77) 

 
while the constructed GLRT statistic is shown in (72). 
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Example - Partially Observed Linear Model with Non-Gaussian Noise 
 
The partially observed linear model remains the same as in the previous example except instead 
of assuming that w  is white Gaussian noise, we will assume that w  has a Gaussian mixture 
distribution with two components, i.e.,  
 
 2 2

1 2~ (0 ) (1 ) (0 )N N      w I I  (78) 

 
where  , 2

1  and 2
2  are known ( 0 1  ). The following derivation can be easily extended 

when 2

1
~ (0 )

L

i ii
N 


w I . 

 
Since w  has a Gaussian mixture distribution, TT G x  is also Gaussian mixture distributed and  
 
 2 2

1 2 0~ (0 ) (1 ) (0 ) underT TN N H      T G G G G  (79) 

 
So we have  
 
   2 21 1

1 22 2
0( ) ln exp ln (1 )

T T T T
TK E e e  

 
 
 
 

     
G G G Gθ θ t  (80) 

 
Hence the constructed PDF is  
 
 

 
 

 
 

 

1 12 22 2

2 21 1
1 22 2

0

1 1

2 2
2 21 2
1 2

( )

exp ( ) ln ( )

1
exp exp

2 22 det 2 det

exp (1 )

q q

T T T T

T

T T

T

p

K p H

e e 

 
  

 

 

   
   
   

 
 
 
 



     
               
     

   

T

T

T T T T

G G G G

t θ

θ t θ t

t G G t t G G t

G G G G

θ t

(81)

 
Although this constructed PDF cannot be further simplified, we can still find the MLE by solving  
 
 2 21 1

1 22 2

2 21 1
1 22 2

2 2
1 2(1 )( )

(1 )

T T T T

T T T T

T Te eK

e e

 

 

   
 
   

 
  

G G G G

G G G G

G G G Gθ
t

θ
 (82) 

 
Our test statistic is just  
 
 

    
 21

2 21 2
12 (1 )( ) ln

T TT TT T eK e


 
 
 
 
 
 
  
 

   
θ G Gθ

θ G Gθθ t θ θ t  (83) 
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where θ  satisfies (82). Although no analytical solution of the MLE of θ  exists, it can be found 
using convex optimization techniques [30], [31]. Moreover, an analytical solution exists when 
 θ 0 . To see this, we will show that  
 
  2 2

1 2
|

( )
(1 )lim T TK   

  


    

θ 0

θ
G Gθ G Gθ 1

θ
 (84) 

 
where ( )K


θ
θ  is shown in (82) and    means element-by-element division.  

 
To prove (84), we have  
 
 2 21 1

1 22 2(1 ) 1lim
T T T T

e e  
 
 
 
  

  G Gθ G Gθ

θ 0

 (85) 

 
and  
 

   2 21 1
1 22 22 2 2 2

1 2 1 2
0

(1 ) (1 )lim
T T T T

T T T Te e       
 

        θ G Gθ θ G Gθ

θ

G Gθ G Gθ G Gθ G Gθ 1 (86)

 
by L’Hopital’s rule. Dividing (86) by (85) and from (82), (84) is proved. As a result of (82) and 
(84), the MLE of θ  satisfies 
 
 2 2

1 2(1 )T T    t G G G G  (87) 

 

as 0 θ  and θ  can be easily found as  
 
    1

2 2
1 2

1

(1 )
T

  



 

θ G G t  (88) 

 
Since  
 
 2 2

1 2
0

1 1
( ) (1 ) 1

2 2lim T T T TK   
 

     
 θ

θ θ G Gθ θ G Gθ  (89) 

 
by using L’Hopital’s rule twice, as 0 θ , our test statistic becomes (see (83))  
 
        12 2

1 2 2 2
1 2

1 1 1
(1 )

2 2 2 (1 )

T T T T T
T T T T  

  


 
 
 

        
θ t θ G Gθ θ G Gθ t G G t (90)

 
To find the clairvoyant GLRT statistic, we know that under 1H  the true PDF is  
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   
 

   
 

1

2 21 2 2
11

1

2 21 2 2
22

1
( ) exp ( ) ( )

22 det

1 1
      exp ( ) ( )

22 det

T

T T T
q T

T

T T T
q T

p


 


 



 



 

 
     
 
 
      
 
 

T

G G
t α t G Hα t G Hα

G G

G G
t G Hα t G Hα

G G

(91) 

  
Note the difference between (81) and (91) since (81) is the constructed PDF and (91) is the true 
PDF. The MLE of α  is found by maximizing (91) over α .  

When q p , the MLE of α  may not be unique but satisfies Tt G Hα . As a result, ( )p T t α  is 

a constant and the clairvoyant GLRT statistic becomes  
 
 ln ( )p T t 0  (92) 

 

Note that since ( )p T t 0  is decreasing as   1T T 
t G G t  increases, the clairvoyant GLRT statistic 

becomes  
 
   1T T 

t G G t  (93) 

 
which is the same as our test statistic (with only a positive scale factor) as 0 θ  (see (72)). 
However, for large signal, our test statistic in (83) is not equivalent to the clairvoyant GLRT 
statistic in (93). This example shows that our method may not offer the suboptimal performance 
as the clairvoyant GLRT does for large signal.  
 
When q p , it can be shown that  
 
      

11 1T T T T T
 

α H G G G G H H G G G t  (94) 

 
and the clairvoyant GLRT statistic becomes  
 
 

   

   

1

2 22
11

1

2 22
22

1
  exp ( ) ( )

2

1 1
exp ( ) ( )

2

T

T T T
q

T

T T T
q









 
 
 



 
 
 

 
   
 
 
      
 
 

G G
t G Hα t G Hα

G G
t G Hα t G Hα

 (95) 

 
Note that the noise in (78) is uncorrelated but not independent. We next consider a general case 
when the noise can be correlated with a Gaussian mixture PDF  
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1 2~ (0 ) (1 ) (0 )N N    w C C  (96) 

 
It can be shown that similar to (83), our test statistic is  
 
     1 1

1 22 2ln (1 )
T TT TT

e e 
 
 
 
 
 
 

  θ G C Gθ θ G C Gθθ t  (97) 

 
and the clairvoyant GLRT statistic is  
 
 

       1 1

1 21 2 1 2
1 2

1 1 1
ln exp exp

det 2 det 2
T T T T  

 

                
t G C G t t G C G t

C C
(98) 

 
when q p .  
 
When q p , the MLE of α  is not in closed form, and hence we write the clairvoyant GLRT 
statistic as  
 
 

       

       

1

11 2
1

1

21 2
2

1
exp

2det

1 1
            exp

2det

max TT T T

T

TT T T

T













       
       

t G Hα G C G t G Hα
G C Gα

t G Hα G C G t G Hα
G C G

 (99) 

 
 
Distributed Detection Summary 
 
We have considered the partially observed linear model with both Gaussian and non-Gaussian 
noise. Table 1 compares our test statistic with the clairvoyant GLRT. 
 
1) In Gaussian noise, 2~ ( )N w 0 I . The test statistics are exactly the same for q p .  

2) In uncorrelated non-Gaussian noise, 2 2
1 2~ ( ) (1 ) ( )N N      w 0 I 0 I . The test statistics are 

the same as θ 0  for q p .  

3) In correlated non-Gaussian noise, 1 2~ ( ) (1 ) ( )N N    w 0 C 0 C . Although we cannot show 

the equivalence between these two test statistics, we will see in later that their performance 
appears to be the same. 
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Table 1. Comparison of Our Test Statistic and the Clairvoyant GLRT 

 
 
 
3.3.5. Examples-Distributed Classification 
In this section, we compare our method with the estimated MAP classifier for some classification 
problems. The estimated MAP classifier assumes that the PDF of T  under iH  is known except 

for some unknown underlying parameters iα .We assume equal prior probability of the candidate 

hypothesis, i.e., 1( ) ( ) 1/Mp H p H M   . So the estimated MAP classifier reduces to the 

estimated maximum likelihood classifier [1], which finds the MLE of iα  and chooses iH  for 

which the following is maximum over i :  
 
 ( )ip T t α  (100) 

 

where  iα  is the MLE of iα . 

 
Example:  Linear Model with Known Variance 
 
Consider the following classification model:  
 
 

i i iH A  x s w  (101) 

 
where is  is an 1N   known signal vector with the same length as x  and depends upon the class, 

iA  is the unknown signal amplitude, and w  is white Gaussian noise with known variance 2 . 

Assume that instead of observing x , we can only observe the measurements of two sensors  
 
 

1 1
TT H x  (102) 

 
 
 

2 2
TT H x  (103) 

 
where 1H  is 1N q  and 2H  is 2N q . Here 1q  and 2q  are the length for vectors 1T  and 2T  

respectively. We can write (103) as  
 
 TT G x  (104) 
 
by letting  
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1

2

 
 
 
 
 


T

T
T

 (105) 

 
and  
 
 

1 2
 
  G H H  (106) 

 
 

where G  is 1 2( )N q q   with 1 2q q N  . We assume that G  has full column rank so that there 

are no perfectly redundant measurements of the sensors. Note that G  can be any matrix with full 
column rank. 
 
Let 0H  be the reference hypothesis when there is noise only, i.e.,  

 
 

0H  x w  (107) 

 
Since x  is Gaussian under 0H , according to (104), T  is also Gaussian and  

 
  2~ TN T 0 G G  (108) 

 
 

under 0H . We construct the PDF under iH  as in (13) with  

 
   2

0

1
( ) ln exp

2
T T T

i i i iK E    θ θ T θ G Gθ  (109) 

 
Hence the constructed PDF is            
 
 

0( ) exp ( ) ln ( )T
i i ip K p H      T Tt θ θ t θ t  

 

 
 

1 2 12 2

1

2
2

2

1 1
exp exp

2 22 det
q q

T T T
i i i

T






 
 
 
     

 

 
   
 
 

T Tt G G t
θ t θ G Gθ

G G
 

(110) 

 
which can be simplified as  
 
  2 2~ underT T

i iN H T G G G G  (111) 
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The next step is to find the MLE of iθ . Note that the MLE of iθ  is found by maximizing 

( )T
i iKθ t θ  over iθ . If this optimization procedure is carried out without any constraints, then 


iθ  would be the same for all i . Hence we need some implicit constraints in finding the MLE. 

Since iθ  represents the signal under iH , we should have  

 
 ( )

i

T
i i i HA E θ G s T  (112) 

 
which is the mean of T  under iH . As a result, (111) can be written as  

 
  2 2~ underT T T

i i iN A H T G GG s G G  (113) 

 
Thus, instead of finding the MLE of i  by maximizing  

 
 21

( )
2

T T T T
i i i i iK   θ t θ θ t θ G Gθ  (114) 

 
with the constraint in (112), we can find the MLE of iA  in (113) (since is  is assumed known) 

and then plug it into (112). It can be shown that  
 
 

2
ˆ

T
i

i T T T
i i

A 


s Gt

s GG GG s
 (115) 

 
and  
 
 

2

T T
i i

i T T T
i i


G s s Gt

θ
s GG GG s

 (116) 

 
Hence by removing the constant factors, the test statistic of our classifier for iH  is  

 
 2( )

( ) ( )

T
i

T T T T
i i

s Gt

G s G G G s
 (117) 

 
according to (47).  
Next we consider the estimate MAP classifier. In this case, we assume that we know the true 
PDF except for iA   

 
  2~ underT T

i i iN A HT G s G G  (118) 
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Note that (118) is the true PDF of T  under iH  and (113) is the constructed PDF. It can be 

shown that the MLE of iA  in the true PDF under iH  is  

 
  

 

1

1
ˆ

T T
i

i T T T
i i

A




s G G G t

s G G G G s
 (119) 

 
By removing the constant terms, the test statistic of the estimated MAP classifier for iH  is  

 
  

 

1 2

1

( )

( ) ( )

T T
i

T T T T
i i





s G G G t

G s G G G s
 (120) 

 
according to (100). Note that (115) and (119) are different because (115) is the MLE of iA  under 

the constructed PDF and (119) is the MLE of iA  under the true PDF. Also note that if TG G  is a 

scaled identity matrix, test statistics in (117) and (120) are equivalent, and hence our method 
coincides with the estimated MAP classifier. 
 
Example:  Linear Model with Unknown Variance 
 
To extend the above example, we consider the above linear model with unknown noise variance 

2 . As we have shown in (113), the constructed PDF is still  
 
  2 2~ underT T T

i i iN A H T G GG s G G  (121) 

 
except for that 2  is unknown. Let 2

i iB A , we have  

 
  2~ underT T T

i i iN B HT G GG s G G  (122) 

 
Instead of finding the MLEs of iA  and 2 , we can equivalently find the MLEs of iB  and 2 . 

Let T T
i ih G GG s  and TC G G . It can be shown that  

 
 1 1 1ˆ ( )T T

i i iiB
   h C h h C t  (123) 

 
and  
 
 12

1 2

1
ˆ ˆ( ) ( )ˆ T

i ii iB Bp p
   


t h C t h  (124) 

 
By removing the constant factors, it can also be shown that the test statistic is equivalent to  
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 1 1 1 1

1 1 1 1 1

( )

( )

T T T
i i i i

T T T
i i i i

   

     
  


t C h h C h h C t

t C C h h C h h C t
 (125) 

 
Next we consider the estimated MAP classifier. The true PDF is still  
 
  2~ underT T

i i iN A HT G s G G  (126) 

 
but with unknown iA  and 2 . Let T

i ig G s  and TC G G . Similar to (123), (124) and (125), it 

can be shown that  
 
 1 1 1ˆ ( )T T

i i iiA
   g C g g C t  (127) 

 
 
 12

1 2

1
ˆ ˆ( ) ( )ˆ T

i ii iA Ap p
   


t g C t g  (128) 

 
and the test statistic of the estimated MAP classifier is  
 
 1 1 1 1

1 1 1 1 1

( )

( )

T T T
i i i

T T T
i i i i

   

     
  


t C g g C g h C t

t C C g g C g g C t
 (129) 

 
Note that if TG G  is a scaled identity matrix, since T

i ih G Gg , the test statistics in (125) and 

(129) are equivalent. Hence our method is exactly the same as the estimated MAP classifier if 
TG G  is a scaled identity matrix. 

 
Distributed Classification Summary 
 
We have considered a linear model both known and unknown noise variance. Table 2 compares 
our test statistic with the estimated MAP classifier. If TG G  is a scaled identity matrix, our 
method and the estimated MAP classifier are identical. Note that this is the case when all the 
columns in G  are orthogonal and have same power, such as the demodulation of M-ary 
orthogonal signals in communication theory. 
 

Table 2. Comparison of Our Test Statistic and the Estimated MAP Classifier 
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3.3.6. Simulations 
 
Simulation:  Distributed Detection 
 
Since our test statistic coincides with the clairvoyant GLRT under Gaussian noise for q p  as 
shown in subsection 3.3.4, we will only compare the performances under non-Gaussian noise 
(both uncorrelated noise as in (78) and correlated noise as in (96)). Consider the model where  
 
 

1 2 3 0[ ] cos(2 ) [ ]nx n A A r A f n w n       (130) 

 
for 0,1, , 1n N   with known damping factor (0 1)r   and frequency 0f  but unknown 

amplitudes 1A , 2A , 3A  and phase  . This is a linear model as in (61) where  

 
 

0 0

1
00

1 1 1 0

1 cos(2 ) sin(2 )

1 cos(2 ( 1)) sin(2 ( 1))N

r f f

r f N f N

 

 

 
 
 
 
   

H
   

 (131) 

 
and        1 2 3 3[ cos  sin ]TA A A A  α . 

 
Let w  have an uncorrelated Gaussian mixture distribution as in (78). For the partially observed 
linear model, we observe two sensor outputs as in (63, 64). We compare the GLRT in (83) with 
the clairvoyant GLRT in (93). Note that the MLE of θ  in (83) is found numerically, not by the 
asymptotic approximation in (88). 
 
In the simulation, we use 20N  , 1 2A  , 2 3A  , 3 4A  , 4   , 0 95r   , 0 0 34f   , 

0 9   , 2
1 50  , 2

2 500  , and 1H  and 2H  are the first and third columns in H  respectively, 

i.e., 1 [1 1  1]TH  , 2 0 0[1 cos(2 )  cos(2 ( 1))]Tf f N  H  . Hence, only the DC level is 

sensed by one sensor and the in-phase component of the sinusoid is sensed by the other sensor. 
As shown in Figure 3, the performances are almost the same (even for very small false alarm 
rate) which justifies their equivalence when 0 θ as shown in Section 3.2.4.  
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Figure 3. GLRT ROC Curves for Uncorrelated Gaussian Mixture Noise 

Constructed PDF and the Clairvoyant GLRT 
 
 
Next for the same model in (130), let w  have a correlated Gaussian mixture distribution as in 
(96). We compare performances of the GLRT using the constructed PDF as in (97) and the 
clairvoyant GLRT as in (98). We use 20N  , 1 3A  , 2 4A  , 3 3A  , 7   , 0 9r   , 

0 0 46f   , 0 7   , 1 [1 1  1]TH  , 2 0 0[1 cos(2 )  cos(2 ( 1))]Tf f N  H  . The covariance 

matrices 1C , 2C  are generated using 1 1 1
TC R R , 2 2 2

TC R R , where 1R , 2R  are full rank 

N N  matrices. As shown in Figure 4, the performances are still very similar even for small 
false alarm rate. 
 
 

 
Figure 4. GLRT ROC Curves for Correlated Gaussian Mixture Noise 

Constructed PDF and the Clairvoyant GLRT 
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Simulation:  Distributed Classification 
 
For the model in (101) we first consider a case when TG G  is approximately a scaled identity 
matrix. Let 1 0 4A   , 2 1 2A   , 3 0 9A    and  

 
 1 1

2 2

3 3

( ) cos(2 )

( ) cos(2 )

( ) cos(2 )

s n f n

s n f n

s n f n









 (132) 

 
 

where 0,1, , 1n N   with 25N  , and 1 0 14f   , 2 0 34f   , 3 0 41f   . Let 

1 2 3( ) ( ) ( ) 1 3p H p H p H    . Assume that there are two sensors, each with an observation 

matrix as follows respectively:  
  

 

 

1 1
1

2 2

2 3 3

1 cos(2 ) cos 2 ( 1)

1 cos(2 ) cos 2 ( 1)

1 cos(2 ) cos 2 ( 1)

T

T

f f N

f f N

f f N

 
 

 

 
   

   

H

H







 (133) 

 
 

 
We use (117) and (120) as our test statistics for the two methods respectively, when 2  is 
known. Test statistics in (125) and (129) are used when 2  is unknown. The probabilities of 
correct classification are plotted versus 2ln(1 )  in Figure 5. We see that our method has the 

same performance with the estimated MAP classifier with known or unknown 2 , and 
probabilities of correct classification goes to 1 as 2 0  .  
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Figure 5. Probability of Correct Classification for Both Methods 

 
 

Next we consider a case when TG G  is not a scaled identity matrix. Let 1 0 5A   , 2 1A  , 3 1A   

and  
 
 1 1

2 2

3 3

( ) cos(2 ) 1

( ) cos(2 ) 0 5

( ) cos(2 )

s n f n

s n f n

s n f n





 
  


 (134) 

 
 

where 0,1, , 1n N   with 20N  , and 1 0 17f   , 2 0 28f   , 3 0 45f   . Let 

1 2 3( ) ( ) ( ) 1 3p H p H p H    . Assume that there are three sensors (this is an extension of the 

two sensor assumption), each with an observation matrix as follows respectively:  
 
  

 
 

   

1

1 1
2

2 2

3 3 3

1 1 1

1 cos(2 ) cos 2 ( 1)

1 cos(2 ) cos 2 ( 1)

1 cos 2 ( 0 02)  cos 2 ( 0 02)( 1)

T

T

T

f f N

f f N

f f N

 
 

 



 
   

      

H

H

H









 (135) 
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Note that in 3H , we set the frequency to 3 0 02f   . This models the case when the knowledge of 

the frequency is not accurate. We also see in Figure 6 that the performances of both methods are 
the same with known or unknown 2 , and probabilities of correct classification goes to 1 as 

2 0  . 
 
 

 
Figure 6. Probability of Correct Classification for Both Methods. 

 
 
3.4. Robust Signal Detection Using the EEF 
 
3.4.1. Introduction 
 
It is well known that in detection problems, the Neyman-Pearson (NP) decision rule is optimal in 
that it maximizes the probability of detection DP  for a given probability of false alarm FAP   

[37]. It decides 1H  if  

 
 1

0

( )
( )

( )

p
L

p
 

x
x

x
 (136) 

 
 

where 1( )p x  and 0 ( )p x  are the probability density functions (PDFs) of the observed samples x  

under 1H  and 0H  respectively, and   is the threshold given by  
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0{ ( ) }
( )FA L

P p d



 

  x x
x x  (137) 

 
However, the NP rule requires complete knowledge of the PDF under each hypothesis. For many 
practical detection problems, the PDF under each hypothesis is parameterized by some unknown 
parameters. Due to the unknown parameters, the PDFs are not completely specified. Therefore, 
suboptimal detectors are implemented and the NP detector can be used as a performance upper 
bound. One popular suboptimal detector is the generalized likelihood ratio test (GLRT) [37], 
which replaces the unknown parameters by their maximum likelihood estimates (MLEs) [38]. It 
has been shown that the GLRT is asymptotically uniformly most powerful (UMP) among all 
tests that are invariant [39]. In some other problems, it is even difficult to obtain the 
parameterized PDFs. This may happen in the cases when we do not have enough training data to 
accurately estimate the PDF, or to find a parameterized model that fits the data, especially when 
dimension of the samples is high. Hence, sensor integration techniques have been used to 
construct a PDF based on all the available information. The copula based framework is used in 
[40], [41] to estimate the joint PDF from the marginal PDFs. Joint PDF construction from 
marginal PDFs is also considered in [42] based on the exponentially embedded family (EEF). 
The EEF is extended to the case when even the marginal PDFs are unknown [43]. 
 
We consider a robust detection problem where the alternative hypothesis 1H  has multiple 

candidate models. Since the PDF under 1H  is not completely known or even parameterized, the 

optimal NP detector or the suboptimal GLRT cannot be implemented. Because of the lack of 
information about the PDF under 1H , we apply the multimodal sensor integration method 

proposed in [43] to combine the multiple candidate models into a parameterized EEF, and use 
the EEF as the parameterized PDF under 1H . We further prove that the EEF is asymptotically 

optimal, as it will converge to the true candidate model as the number of samples goes to 
infinity. 
 
 
 
Problem Statement 
 
Consider a hypothesis testing problem where the alternative hypothesis has two candidate 
models, i.e.,  
 
 
 

0 0

1 1 2

~ ( )

~ ( ) or ~ ( )

H p

H p p





x x

x x x x
 (138) 

 
 
where x  is the 1N   observed sample vector. So under 1H , x  can be generated from either 1p  

or 2p . This is different from the traditional multiple hypothesis testing problem, where each 

hypothesis has only one candidate model. Note that we use two candidate models for simplicity, 
and the results can be easily extended to multiple candidate models. It is clear that if the true 
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PDF under 1H  is 1( )p x , then the optimal NP detector decides 1H  if 1

0

( )
1 1( )( ) ln p

pT  x
xx  for some 

threshold 1 . Similarly, if the true PDF under 1H  is 2 ( )p x , then the optimal NP detector decides 

1H  if 2

0

( )
2 2( )( ) ln p

pT  x
xx  for some threshold 2 . Unfortunately, we only know that the true PDF 

is either one of the two. If the wrong PDF has been used, it is expected that the detection 
performance will degrade. Therefore, we need to find a way to combine the candidate models 
using all the available information. In the next section, we will use the multimodal sensor 
integration technique to construct the parameterized PDF under 1H . 

 
3.4.2. Sensor Integration and the EEF 
 
It has been shown in [43] that if we observe measurements from two sensors 1( )T x  ( 1 1p  ) and 

2 ( )T x  ( 2 1p  ) which are transformations of the sample vector x , we can construct the PDF of x  

under 1H  as  

 
  

1 2, 1 1 2 2 1 2 0exp ( ) ( ) ( ) ln ( )T Tp K p      η η x η T x η T x η η x  (139) 

 
 

where  1 2 0 1 1 2 2( ) ln exp ( ) ( )T TK E     η η η T x η T x  is the cumulant generating function that 

normalizes the PDF to integrate to one. The subscript 1 2,η η  on p  implies that the PDF is 

parameterized by 1 2,η η . 

 
In the problem discussed above, we are not directly given sensor outputs 1( )T x  and 2 ( )T x . But 

we can consider 1

0

( )
1 ( )( ) ln p

pT  x
xx  as the optimal detection statistic if 1( )p x  is true, and 

2

0

( )
2 ( )( ) ln p

pT  x
xx  as the optimal detection statistic if 2 ( )p x  is true. Note that 1( )T x  and 2 ( )T x  are 

scalars here, so we do not use boldface. Hence, 1

0

( )
1 ( )( ) ln p

pT  x
xx  and 2

0

( )
2 ( )( ) ln p

pT  x
xx  can be 

considered as the measurements from two sensors. Each sensor is optimal for its corresponding 
candidate hypothesis. Then we have the parameterized PDF of x  under 1H  according to (139) as 

 
    

1 2 1 1 2 2 1 2 0

1 2
1 2 1 2 0

0 0

exp ( ) ( ) ( ) ln ( )

( ) ( )
exp ln ln ( ) ln ( )

( ) ( )

p T T K p

p p
K p

p p

     

   

     

 
     

 

x x x x

x x
x

x x

 (140) 

 
 

where  1 2 0 1 1 2 2( ) ln exp ( ) ( )T TK E T T       x x . Note that 1(1 0) ln ( ) 0K p d   x x . As a 

result, when 1 1   and 2 0  , we have  1 0 1( )p p x x . Similarly,    0 1 2p p x x . 
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Since  
1 2

p  x  is the parameterized PDF under 1H , now we can use the GLRT for detection. 

The GLRT requires the MLEs for 1  and 2 . The MLEs are obtained by maximizing the log-

likelihood function 
1 2 1 1 2 2 1 2 0ln ( ) ( ) ( ) ln ( )p T T K p          x x x  or equivalently maximizing 

1 1 2 2 1 2( ) ( ) ( )T T K     x x . Since 1 2( )K    is a convex function by Holder’s inequality [44], 

the MLEs can be solved by taking the derivatives with respect to 1  and 2 , and setting them to 

zeros. That is, the MLEs for 1  and 2  should satisfy  

 
 
 1 1 2

0 1

( ) ( )
ln

( )

p K

p

 


 



x

x
 (141) 

 
 
 2 1 2

0 2

( ) ( )
ln

( )

p K

p

 


 



x

x
 (142) 

 
Once the MLEs 1̂  and 2̂  are solved from (141), the GLRT decides 1H  if  

 
 
  

 
1 2ˆ ˆ

1 21 2 1 2
0

ˆ ˆ ˆ ˆln ( ) ( ) ( )
p

T T K
p
          

x
x x

x
 (143) 

 
3.4.3. Asymptotic Optimality of the EEF 
 
In sensor integration, the EEF has been shown to be asymptotically optimal in that it minimizes 
the Kullback-Leibler (KL) divergence between the true PDF and the parameterized PDF [43]. 
The KL divergence is known as a non-symmetric measure of difference between two PDFs. For 
two PDFs 1p  and 0p , it is defined as  

 
   1

1 0 1
0

( )
|| ( ) ln

( )

p
D p p p d

p
 

x
x x

x
 (144) 

The KL divergence is non-negative or  1 0|| 0D p p   with equality if and only if 1 0p p  [9]. It 

also measures the asymptotic performance for detection by Stein’s lemma [46]. 
In this section, we will also show that the EEF is asymptotically optimal in that  

1 2ˆ ˆp  x  

converges to the true PDF. Note that we have shown that when 1 1   and 2 0  , 

 
1 2 1( )p p  x x . Hence, it is expected that if the true PDF is 1( )p x , 1̂  should be close to 1 and 

2̂  be close to 0 . This is true, as we will prove next, that when the true PDF is 1p , 1ˆ 1
P

   and 

2ˆ 0
P

   as the number of samples L   where 
P

  denotes convergence in probability. 
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Assume that we have L  independent identically distributed (IID) sample vectors 0 1 1… L  x x x . 

The parameterized PDF in (140) can be easily extended as  
 

 
1 2

1 1 1

0 1 1 1 1 2 2 1 2 0
0 0 0

1 1 1
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0 0 00 0
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  
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x x x x x x

x x
x

x x

 
 
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 (145)

 
  
     
The MLEs 1  and 2  are found by solving  

 
 1

1 1 2

0 0 1
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i i
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 
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 (146) 

 
 
 1

2 1 2

0 0 2
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ln
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i

i i

p K

L p

 





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 x
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 (147) 

 
Assume that 1( )iT x  and 2 ( )iT x  are linearly independent [47], then 1  and 2  are identifiable, 

and hence  1 2K    is strictly convex [48]. Then the solution of (145, 146) is unique. Let  
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 (148) 

 
 

 
1

2




 
 
 
 
 

η  (149) 

 
and  
 
 

1 2

1

1 2

2

( )

( )
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K
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 

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

  
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  

f η  (150) 

 
 

Then (145, 146) can be written as  
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 ( ) f η t (151) 
 
Since for each t , the solution of η  is unique, there is a one-to-one correspondence between t  
and η . Hence, we have the inverse function  
 
 1( )η f t  (152) 

 
Assume that the true PDF is 1( )p x , then we have  
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 (153) 

 
as L   by the law of large numbers. Let [10]T η . Since  
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we have  
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 (155) 

 
Note that the expected value with respect to p  is the same as that with respect to 1p . This is 

because as we have shown that, when 1 2[ ] [10]T T    η , 1( ) ( )p p η x x . From (154), we have 

 
 1( )  η f t  (156) 

  

We assume that 1f  is continuous. From (152) 
P

t t , then we have [49]  
 
 1 1( ) ( ) [10]

P
T      η f t f t η  (157) 
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It shows that 1ˆ 1
P

   and 2ˆ 0
P

   as the number of samples L   if the true PDF is 1p . This 

also implies the asymptotic optimality of the EEF since the parameterized PDF 
1 2ˆ ˆp   converges 

to the true PDF 1p  as L  . From this analysis, we can use 1̂  and 2̂  as indicator of the true 

PDF. 
 
3.4.4. Example:  Detection Problem with Sensor Integration 
 
Consider a detection problem with  
 
 

0

1 or

H

H

 
    

x w

x A w x s w
 (158) 

 

where x  is the 1N   sample vector,    
T

A A AA   is completely known, 
2 2~ (0 ) ~ (0 )sN N   s I w I  with 2 2

s   known. If the candidate model  x A w  is used 

under 1H , the optimal NP detector decides 1H  if  

 
 

1
1 1 12 2
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( ) 2
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( ) 2

T T Tp
T c

p


 


    
x A x A A A x

x
x

 (159) 

 
with 1c  a constant that does not depend on x . This is also known as the matched filter. If the 

candidate model  x s w  is used under 1H , the optimal NP detector decides 1H  if  
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2
2 2 2 22 2 2 2 2 2
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   
   

 
       
   

x xx
x x x

x
 (160) 

 
with 2c  a constant. This is equivalent to an energy detector. 

 
The parameterized PDF constructed according to (140) is  
 
  

1 2 1 1 2 2 1 2 0( ) exp ( ) ( ) ( ) ln ( )p T T K p H           x x x x  (161) 

 

where 20 02
ln ( )p c


  Tx xx  with 0c  a constant. The constants in 1( )T x , 2 ( )T x  and 0ln ( )p x  can 

be ignored as 1 2( )K    will normalize the PDF. Hence, the EEF is  
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We assume that 1 20 1    . The MLE is found by maximizing  
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over 1 20 1     where 
2 2 2

2 2
2 2 2 22 2 2

(1 )1 1
2 22

s s
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. Then we can decide 1H  if  
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3.4.5. Simulation Results 
 
For the example above, we let 1 2A   , 2 2s  , and 2 1  . In Figure 7(a), we plot 1̂  and 2̂  as 

N  increases when all the samples are generated from 1p  or  x A w . We see that 1ˆ 1   and 

2ˆ 0   as N   which corresponds to 1p . For Figure 7(b), all the samples are generated from 

2p  or  x s w  and we can see that 1ˆ 0   and 2ˆ 0   as N   which corresponds to 2p . 

In Figure 7(c), the first 100 samples are generated from 1p  and the next 1900  samples are 

generated from 2p . Therefore, 1̂  and 2̂ can be used to track the models. Then we plot the 

receiver operating characteristic (ROC) curves for the EEF, matched filter, energy detector, max 
rule, product rule [50] when the true PDF is 1p  in Figure 8 (using 5N  ) and the ROC curves 

for these methods when 2p  is true in Figure 9 (using 25N  ). Note that the matched filter is the 

optimal NP detector in Figure 8 and the energy detector is the optimal NP detector in Figure 9. 
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We can see that the performance of the EEF is close to the NP detector in both cases, and 
therefore is more robust. 
 

 
Figure 7. PDF Parameters for Different Models. 

 

Figure 8. ROC curves for different detectors when  x A w . 
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Figure 9. ROC Curves for Different Detectors when  x s w . 

 
3.5. Conclusions 
 
A novel method of constructing the joint PDF of the measurements from a distributed multiple 
sensor systems has been proposed. Only a reference PDF is needed in the construction. It is 
shown that moment matching and MLE are equivalent. The performance of our method has 
shown to be as good as the clairvoyant GLRT and estimated MAP classifier respectively for 
detection and classification, while less information is needed for our method.  
 
The EEF has been used for a robust detection problem where the alternative hypothesis 1H  has 

multiple candidate models. A parameterized PDF under 1H  is constructed based on the EEF. The 

asymptotic optimality of the EEF is proved. The EEF and existing classifier combining rules are 
compared in simulations, and it shows that the EEF has comparable performance with the 
optimal NP detector. 
 
We have shown the feasibility and benefits of using the EEF for detection and classification 
problems where the PDF of the sensor measurements is unknown. The EEF has important 
applications in multi-modal radar systems since it allows us to combine data of different 
modality (for example, MTI data and EO data) from a statistical standpoint. It is constructed 
based on the measurements from different sensors, and therefore, it is robust in practice where 
we do not have the exact signal model. A global decision is made by the central processor which 
combines all the available information from different sensors. The EEF is computationally 
efficient because it belongs to the exponential family and the maximum likelihood estimation is a 
convex optimization problem. The EEF asymptotically minimizes the Kullback-Leibler 
divergence between the true PDF and the exponential family. As a result, the performance of the 
detector or classifier is expected to be asymptotically optimal. 
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4. Algorithm Development and Implementation 
 
We address an important sub-problem of using multiple, spatially distributed, adaptive multi-
modal sensors for multiple target tracking and data association. When left unmodeled or ignored, 
inherent field-of-view (FOV) limitations for each mode and sensor present a challenge to 
accurate tracking, appropriate sensor management, and system robustness. This is especially true 
in the context of increasing sensor adaptivity, which may naively sacrifice multiple target 
performance for single-target hyper accuracy. In light of these limitations, we propose a 
relatively simple variance-penalty oriented modeling solution that effectively presents the FOV 
as a new design parameter. A novel closed-loop adaptive mode-parameter selection algorithm 
incorporating this penalty model is also proposed for use in both ideal and cluttered sensing 
environments. Simulations demonstrate the necessity and benefits of the proposed model and 
algorithm in a variety of tracking and association contexts as compared to completely 
unmodeled/non-adaptive methods. 
 
4.1. Methods, Assumptions, and Procedures 
 
The purpose of this section is to summarize the research effort into limited field-of-view (FOV) 
effects in multi-modal sensing applications.  
 
The role of multimodal sensing in multiple target tracking and data fusion has received increased 
attention and research efforts, evidenced by the increasing available literature on the topic and 
the existence of coordinated research efforts like the one this report is based on.  By combining 
multiple sensor types into a single integrated system, the object is to obtain superior performance 
compared with employing the modes individually. A commonly investigated sensor grouping is 
the combining of active and passive sensor modes, exemplified by the radio-frequency 
radar/electro-optical imaging (RF/EO) sensor pairing. It has been shown by Blasch and Yang in 
[51] that this pairing results in improved data fusion, reducing misassociation and tracking errors 
in environments with clutter. These systems have also been shown to benefit from adaptive mode 
and parameter selection, which forms the basis for the rest of the following discussion. 
 
Adaptive methods for active sensing modes have been extensively studied in a variety of 
contexts. A notable example are the pioneering works by Kershaw and Evans in [52], [53] on 
radar waveform adaptation for single target tracking in ideal and cluttered sensing. However, 
both of these works were limited to single-target tracking and restricted sets of transmit 
waveform patterns, which greatly simplified the required optimization scheme.  More modern 
examples of radar adaptivity for tracking and association improvement can be found in the 
review paper by Sira, et al. [54] and the references within. Adaptation for passive sensor systems 
has also been considered, e.g. [62]. 
 
More recently, work has focused on systems fusing adaptivity and multimodal sensing for 
enhanced multitarget tracking performance. The work by Zhang, et al. [55] exemplifies this 
effort, considering a system with multiple joint radar/electro-optical sensors that are 
independently tuned throughout the tracking period. This is accomplished through a waveform-
agile particle filter to track multiple targets in clutter, using heuristic methods to select the 
system parameter set that minimized the posterior Cramer-Rao lower bound (PCRLB).  
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In order to appropriately characterize the benefits of adaptivity in any system, much less ones 
exploiting multiple sensing modes simultaneously, attention must be paid to constraints that limit 
the extent of the adaptation. BY appropriately modeling realistic constraints, the impact of a 
given method in an actual deployment scenario can be better assessed, and modifications can be 
tailored to mitigate or even exploit the constraint’s effect. The literature provides a variety of 
analyses & algorithms focused on constraint modeling in sensor management & target tracking, 
including, for example, single-sensor target occlusion [56] and energy conservation in the 
context of sleeping policies [57].  
 
However, of the aforementioned existing literature, however, almost none in the signal 
processing literature consider the effects of finite sensor field-of-view on tracking performance 
or system adaptability. This effect is particularly pronounced in EO sensors, since a target 
outside the FOV is essentially unmeasurable. For the RF modes, out-of-“view” measurements 
take the form of range or doppler aliased returns, if they are even validated at all. Due to the 
more noticeable characterization of this effect in optical systems, the concept of field-of-view 
limitations has been mostly limited to the computer vision and camera literature, e.g. [58–60]. 
Furthermore, most work in the signal processing community has concentrated on controlling 
precise aspects of (usually active) sensors, like low-level waveform or beamform design. Our 
consideration of multimodal sensing, however, necessitates a system-level perspective on 
"waveform"-adaptivity in the spirit of Daum [61] nearly twenty years ago, which emphasized the 
impact of resolution on adaptive parameter schemes for multitarget tracking. In this report, we 
take a similar approach to the FOV problem.  
 
Our contribution during this performance period has been to develop a novel approach to this 
fundamental limitation. Using penalty functions that depend on the mode, measurement function, 
and control variables, we have parameterized the FOV effect in a mathematically simple, but 
powerful manner. These penalty functions augment known models of each measurement's noise 
variance (itself a function of the control) by assigning significantly larger variances to targets 
outside or nearly outside the FOV. This formulation permits a combined covariance 
compensation & joint optimization scheme to natively account for the strengths and limitations 
of each mode.  
 
4.2. Target Dynamic Models 
 
In this work, we consider a common non-maneuvering point-target dynamic model for the 
targets we wish to track, operating in discrete time with a sampling period of ܶ seconds. For 
simplicity, we only consider two-dimensional movement in the ሺݔ,  ሻ plane. At time step ݇, theݕ
state vector for the ݅th target is comprised of Cartesian position and velocity coordinates:  
 
௞ܠ 

௜ ൌ ሾݔ௞
௜ ሶ௞ݔ

௜ ௞ݕ
௜ ሶ௞ݕ

௜ ሿ் (165) 
 
where the superscript i denotes a target index, 
Assuming a linear (or sufficiently linearized) target motion model, the state vector for a single 
target evolves in time as  
 
௞ାଵܠ 

௜ ൌ ௞ۯ
௜ ௞ܠ

௜ ൅ ௞ܟ
௜  (166) 
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where ۯ௞
௜  is the maneuver-dependent system matrix and ܟ௞

௜  is zero-mean Gaussian process noise 
with covariance matrix ۿ௞

௜ .  
 
If we assume that there are ்ܰ,௞ targets present in the greater surveillance area at time ݇, then the 

multitarget state is the set ૏௞ ൌ ൛ܠ௞
௜ ൟ
௜ୀଵ

ே೅,ೖ. For this section, we assume that ்ܰ,௞ is known a priori 

and remains constant for all values of ݇. With this simplification, the set becomes a single 
multitarget supervector formed from stacking the per-target state vectors in index order, or 

૏௞ ൌ ௞ܠൣ
ሺଵሻ் ௞ܠ⋯

ሺே೅,ೖሻ்൧
்
. This multitarget state vector evolves as  

 
 ૏௞ାଵ ൌ ࣛ௞૏௞ ൅ ૑௞ାଵ (167) 
 

where ࣛ௞ ൌ ݃ܽ݅݀݇ܿ݋݈ܾ ቂۯ௞
ሺଵሻ, … , ௞ۯ

ሺே೅,ೖሻቃ and ૑௞ାଵ is a supervector of per-target process noise 

components constructed similarly to the state supervector with a covariance of ࣫௞ ൌ

௞ۿሾ݃ܽ݅݀݇ܿ݋݈ܾ
ሺଵሻ, … , ௞ۿ

ሺே೅,ೖሻሿ, provided there is no coupling of the target states.  
 
4.3. Sensor Measurement Models 
 
This subsection describes the measurement models for the multi-modal sensors considered in our 
analysis. We first describe some general characteristics common to the rest of the section. 
Suppose we observe the aforementioned target environment with ௌܰ homogenous multimodal 
sensors distributed in the surveillance region, with each sensor ݌ comprising of ܯ modes. 
Furthermore, we can parameterize the ሺ݌,  ሻth sensor/mode's operation at time ݇ by the vectorݏ
,݌ሺ௣,௦ሻ,௞. In the interests of notational simplicity, the paired sensor-mode indexing ሺܘ  ሻ isݏ
collapsed into a single (pseudo-)sensor index ݆ defined by the mapping ݆ ൌ ݌ሺܯ െ 1ሻ ൅  The .ݏ
work discussed in this report examined finite FOV effects in both ideal (perfect detection) and 
cluttered sensing environments; as such, the general assumptions and models for both cases will 
be discussed in the subsections below. 
 
4.3.1. Ideal Sensing Environment 
 
We begin our sensor modeling analysis by considering the idealized scenario, where 
sensor/modes are assumed to exist in a non-cluttered environment, have perfect detection 
characteristics, and always correctly associate measurements with their targets. This scenario 
permits us to construct our proposed method free of other concerns.  
 
Under these assumptions, the ݆th sensor/mode measures the ݅th target as  
 
௝,௞ܡ 

௜ ൌ ௞ܠ௝ሺ܋
௜ ሻ ൅ ௝,௞ܞ

௜  (168) 
 
where ܋௝ሺܠ௞

௜ ሻ is the (possibly non-linear) measurement function and ܞ௝,௞
௜  is measurement noise. 

These measurement noise sequences are assumed to be zero-mean Gaussian with system 
parameter-dependent covariance ܀௝

௜ሺܘ௝,௞ሻ that are uncorrelated with both the target process noise 
and the measurement noise from any other sensor/mode. 
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For the desired & examined RF/EO mode pairing, the measurement function in two dimensions 
corresponds to the RF sensor measuring range and range-rate and the EO sensor measuring 
azimuth.The RF sensors obtain their respective measurements by matched filtering of target 
returns in a range-doppler, resulting in range and range-rate estimates for each target. For the ݆th 
sensor located at coordinates ሺݔఫഥ , ఫഥݕ ሻ, the range ݎ௝

௜ to and the range-rate ݎሶ௝
௜ of the ݅th target are  

 
 

௝ݎ
௜ ൌ ටሺݔ௜ െ ఫഥሻଶݔ ൅ ሺݕ௜ െ  ఫഥሻଶ (169)ݕ

 
 

 
ሶ௝ݎ
௜ ൌ

ሶݔ ௜൫ݔ௜ െ ఫഥ൯ݔ െ ሶݕ ௜൫ݕ௜ െ ఫഥ൯ݕ

௝ݎ
௜ . (170) 

 
The EO sensors obtain (in this particular scenario) azimuth measurements from their captured 

image. Hence, the EO measurement equation is ߟ ൌ arcsin ൬
ሺ௫೔ି௫೛,ೕሻ

௥ೕ
೔ ൰. For one sensor, then, the 

overall measurement vector for the ݅th target at time step ݇ is ܋௝,௞
௜ ൌ ௝ݎൣ

௜ ሶ௝ݎ
௜ ௝ߟ

௜ ൧
்
. Each of 

these measurements is corrupted by zero-mean Gaussian noise with a variance that depends on 
each sensor's measurement parameters, which can be collected in the parameter vector ܘ௝,௞. If we 
assume that the measurements are uncorrelated from sensor to sensor, and further, that multiple 
measurements from a single sensor are also uncorrelated, then the measurement covariance 
matrix for each target/sensor pair can be written as ܀௝,௞

௜ ൌ ݀݅ܽ݃൫ߪ௥ଶሺܘ௝,௞ሻ, ௥ሶߪ
ଶሺܘ௝,௞ሻ,  ,௝,௞ሻ൯ܘఎଶሺߪ

where the ݀݅ܽ݃ሺ⋅ሻ operator forms a matrix of its elements along the diagonal. Assuming that the 
RF mode is parameterized by a per-pulse bandwidth ܤ௝ and a pulse repetition frequency ܴܲܨ௝, 

the measurement variances for range and range rate are given by ߪ௥ଶሺܘ௝,௞ሻ ൌ
ଵ

ଵଶ
ሺܿ/2ܤ௝ሻଶ  and  

௥ሶߪ
ଶ൫ܘ௝,௞൯ ൌ

ଵ

ଵଶ
ሺܨܴܲߣ௝/2 ிܰி்ሻଶ	 respectively, where	ܿ is the speed of light, ߣ is the carrier 

wavelength, and ிܰி் is the Doppler integration length (FFT size) [62].  If we assume the mode 
captures a one-dimensional image ௣ܰ௜௫ pixels wide with a detector/pixel angular subtense of ߙ, 
the noise variance of the azimuth measurement is ߪఎଶሺܘ௝,௞ሻ ൌ  ଶ/12 [63]. For each of theseߙ
measurement variances, we have assumed that the measurement noise is uniformly distributed in 
the given resolution cell/pixel and that only one target return originates from said resolution cell. 
 
Temporarily dropping the time index for notational ease, we form a stacked vector of the 

measurements from all sensors for each target as ܡሺ௜ሻ ൌ ቂܡଵ
ሺ௜ሻ் ே೛ܡ⋯

ሺ௜ሻ்ቃ
்
, and then concatenate 

these per-target vectors into a supervector ࣳ ൌ ሾܡሺଵሻ் -ሺே೅,ೖሻ்ሿ். This transforms the stateܡ⋯
space measurement equation in Eq. 6 into:  
 
 ࣳ௞ ൌ ሺ߯௞ሻ܋ ൅ ૅ௞ (171) 
 
where ܋ሺ߯௞ሻ is the non-linear measurement function composed of the per-target, per-sensor 
measurement functions ܋௝

௜ሺܠ௞
௜ ሻ stacked as above. Similarly, ૅ௞ is the identically generated noise 
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vector with block-diagonal covariance ࣬ሺܘሻ (constructed from concatenating the measurement 
covariances), where ܘ is the overall system parameter vector composed of the per-sensor 
parameter vectors ܘ௝. 
 
4.3.2. Modifications for Cluttered Sensing Scenarios 
 
Unfortunately, real life deployment situations use sensors with imperfect detection in 
environments with multiple non-target entities. Due to the inherent characteristics of each 
sensor/mode, the tracking system may reject true target returns and accept false returns as valid 
measurements. In addition, even if a target’s return is correctly detected, there still exists 
ambiguity in regards to which target said measurement corresponds because of the potential for 
other targets and non-target returns. As a result, the idealized measurement model of the previous 
subsection is problematic and requires modification in order to account for these realities. This 
subsection describes these modifications. 
 
Assume each sensor/mode ݆ produces a number of raw returns that are preprocessed in a manner 
that produces kinematic measurements based on the target state vectors and clutter, with target 
detection probability ஽ܲ,୨ and false alarm rate ிܲ஺,୨. After initial detection, these returns are run 
through a validation procedure that compares them to a predicted measurement of each target 
(generated by the state estimation procedure described in Section 4.5 below). A measurement is 
considered valid if it falls within a predefined validation region centered on the predicted 
measurement. In this case, we consider a validation region given by the g-sigma ellipsoid  
 
At time ݇, ௝݉,௞ detected and preliminarily validated measurement vectors are obtained from 

sensor ݆, denoted by the set ࣳ௝,௞ ൌ ሼܡ௟ೕ,௝,௞ሽ௟ೕୀଵ
௠ೕ,ೖ . If the ௝݈th measurement originated from the ݅th 

target, then ܡ௟ೕ,௝,௞ is given by:  

 
௟ೕ,௝,௞ܡ 

௜ ൌ ௞ܠ௝ሺ܋
௜ ሻ ൅ ௝,௞ܞ

௜  (172) 
 
where ܋௝ሺ⋅ሻ is the (possibly non-linear) mode measurement function and ܞ௝,௞

௜  is a zero-mean 
Gaussian random vector denoting measurement noise with system parameter-dependent 
covariance ܀௝ሺܘ௝,௞ሻ. We assume these noise sequences are uncorrelated with both the target 
process noise and the measurement noise from any other sensors or targets. The form of the 
mode covariance assumed under the clutter scenario is similar to the one considered above, but 
separated by mode (hence, the RF mode variances are separate from the EO mode variances, 
etc.).  
Measurements that are not target-originated are assumed to originate from false alarms/clutter. 
These returns are assumed to be uniformly distributed throughout the ݆th sensor's validation 
region with volume ௝ܸ,௞ at time ݇ -- that is, the probability distribution function for a clutter 
measurement ܞത௝,௞ is	݌ሺܞത௝,௞ሻ ൌ 1/ ௝ܸ,௞. The number of false alarms within a given validation 
region is a random variable modeled by a prior that depends on the available information about 
the clutter environment. In our case, the per-sensor clutter density ̅ߣ௝  depends on the given false 
alarm rate	 ிܲ஺,୨ and the size of the resolution cells (which vary depending on the sensor 
parameters). Since the clutter density is thus known, the number of false alarms in the volume is 
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modeled as a Poisson distributed random variable with parameter	̅ߣ௝ ௝ܸ,௞. If ̅ߣ௝ was unknown, the 
false alarm count could be modeled as a diffuse prior, whose value is irrelevant since it cancels 
out of the probability distributions required in the state estimation. 
 
4.4. Ideal Sensing Environment: The Extended Kalman Filter 
 
Under the perfect detection/association assumption, the natural state estimation choice, due to the 
nonlinear measurement equations, is the ubiquitous extended Kalman filter (EKF). While more 
sophisticated state estimation techniques have been used in the literature, the use of the EKF here 
is primarily to provide a simpler metric formulation for the optimization problem in Section 
4.7.2. Using the multitarget state vector ૏௞ and given the measurement supervector ࣳ௞, the EKF 
runs as follows: 
 
Prediction step:  
 ૏ො௞|௞ିଵ ൌ ࣛ௞૏ො௞ିଵ|௞ିଵ (173) 
 ௞࣪|௞ିଵ ൌ ࣛ௞ ௞࣪ିଵ|௞ିଵࣛ௞

் ൅ ࣫௞ (174) 
 

Update step:  
 ૏ො௞|௞ ൌ ૏ො௞|௞ିଵ ൅ ௞ࣥ܍௞ (175) 
 ௞࣪|௞ ൌ ሾ ௞࣪|௞ିଵ

ିଵ ൅ ࣝ௞
்࣬ିଵሺܘ௞ሻࣝ௞ሿିଵ (176) 

 
where ܍௞ ൌ ࣳ௞ െ ሺ૏ො௞|௞ିଵሻ is the innovation, ௞ࣥ܋ ൌ ௞࣪|௞ࣝ௞

்࣬ିଵሺܘ௞ሻ is the Kalman gain, and 
ࣝ௞ is the Jacobian of ܋ሺ߯௞ሻ with respect to ૏௞	evaluated at ૏ො௞|௞ିଵ. 
 
The supervector forms given above generally reduce to independent parallel EKFs for each 
target provided there is no inter-target coupling. When targets are close, however, this coupling 
occurs and the supervector form must be maintained in order to account for cross-covariance 
introduced in the estimation procedure.  
 
4.5. Cluttered Sensing Environment: The MS-JPDAF 
 
In a cluttered sensing environment, tracking algorithms require a data association method to deal 
with false alarms and missed detections, determine measurement origins, and incorporate these 
effects into a state estimation procedure. Most of our work has centered on the multisensor joint 
probabilistic data association (MSJPDA) method first detailed in [64] , but our characterization 
of the problem is compatible with other common methods [65]. More specifically, our 
simulations employ the sequential MSJPDA [66], which uses multiple single-sensor JPDAs to 
sequentially process each sensor's measurements, initializing the next iteration with the filtered 
outputs of the previous step. This process results in  
 
Assuming an extended Kalman filter (EKF) is employed for the propagation equations, the 
prediction step is identical to the standard EKF above, resulting in an estimate of the dynamic 
state ܠො௞|௞ିଵ

௜  and error covariance ۾௞|௞ିଵ
௜  for each target ݅ at time ݇. The MSJPDA temporarily 

treats the various modes of each sensor as independent sensors, resulting in ܰௌ̅ ൌ ௌܰܯ total 
sensor-modes. If we define the intermediate filtered estimate and covariance for the ݅th target 
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from the ݆th sensor/mode as ܠොி,௝
௜  and ۾ி,௝

௜  respectively (where the subscript ܨ denotes ``filtered"), 

with initial values ܠොி,଴
௜ ൌ ො௞|௞ିଵܠ

௜ , then ۾ி,௝
௜ ൌ ௞|௞ିଵ۾

௜ . Each update iteration starts by calculating 

the joint probabilities ߚ௟ೕ,௝
௜  of the ௝݈th measurement being a true measurement of the ݅th target 

(including the no-measurement probability ߚ଴,௝
௜ ) as in the standard JPDA [67]. Then, we generate 

the intermediate updated per-target state estimate and covariance with the recursions  
 
ොி,௝ܠ 

௜ ൌ ොி,௝ିଵܠ
௜ ൅ ۹௝

௜ തૅ௝
௜ (177) 

 
ி,௝۾ 

௜ ൌ ி,௝۾
௜ െ ሾ1 െ ଴,௝ߚ

௜ ሿ۹௝
௜܁௝
௜۹௝

௜்

൅ ۹௝
௜ ቎෍

௠ೕ,ೖ

௟ೕୀଵ

௟ೕ,௝ߚ
௜ ૅ௟ೕ,௝

௜ ૅ௟ೕ,௝
௜் െ തૅ௝

௜ തૅ௝
௜்቏ ۹௝

௜் 
(178) 

 
where we define the per-measurement innovation ૅ௟ೕ,௝

௜ ൌ ௟ೕ,௝ܡ െ  ௜ሻ and the combinedܠ௝ሺ܋

innovation തૅ௝
௜ ൌ ∑ 	

௠ೕ,ೖ
௟ೕୀଵ

௟ೕ,௝ߚ
௜ ૅ௟ೕ,௝

௜ . The filter gain ۹௝
௜ depends on the underlying estimation 

procedure, as does the innovation covariance ܁௝
௜. Under the EKF assumption, 

۹௝
௜ ൌ ൫۾ி,௝ିଵ

௜ ൯
ିଵ
۱௝
௜൫܁௝

௜൯
ିଵ

 and ܁௝
௜ ൌ ۱௝

௜۾ி,௝ିଵ
௜ ۱௝

௜் ൅ ௝܀
௜ , where ۱௝

௜ is the Jacobian of the 

measurement function evaluated at ܠොி,௝ିଵ
௜ . The final updates are given by the filtered values from 

the last sensor; that is, ܠො௞|௞
௜ ൌ ොி,ேೄഥܠ  and ۾௞|௞

௜ ൌ ி,ேೄഥ۾
௜ . 

 
4.6. Finite Field-of-View Modeling 
 
The measurement models discussed above implicitly assume that the target states can be 
observed throughout the entire region of interest, regardless of parameter setting. Furthermore, 
the noise variance for each measurement, ߪ௠௘௔௦

ଶ , is presumably uniform throughout the 
validation region and valid for all possible measurement values & sensing parameters. In 
practice, sensors are limited to a finite field-of-view (FOV) for each measurement they provide, 
which constrains them to observing only a small subset of the target space. The extent of this 
FOV is dictated by the same parameters that define the overall measurement variance, thus 
constraining the feasible set of signal parameters available to the system at each time step.   
 
This fundamental sensing limitation can be handled in a variety of ways. Many algorithms and 
systems in the existing signal processing literature simply ignore this effect, relying instead on 
judicious guessing or the presumption of a clairvoyant operator who keeps the sensing 
parameters within a range so as to maintain a “reasonable” level of coverage of the target space. 
In [63], Zhang, et al. acknowledge the tradeoff between FOV and measurement accuracy, but do 
not explicitly model it. 
 
Mathematically, this limitation can be encoded by considering each mode ݆’s FOV as a set 
୨࣠,୩ሺܘ୨,୩ሻ that depends on the mode parameters at each time step. Then, the ideal measurement 

equation of target i at mode j can be modified as follows: 
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௝,௞ܡ 
௜ ൌ ௞ܠ௝൫܋ൣ

௜ ൯ ൅ ௝,௞ܞ
௜ ൧࣠ܫ

ౠ,ౡሺܘౠ,ౡሻሺܠ௞
௜  (179) 

 
where ࣠ܫ

ౠ,ౡሺܘౠ,ౡሻሺܠ௞
௜ ) is the set indicator function given by 

 
 

ܫ࣠
ౠ,ౡሺܘౠ,ౡሻሺܠ௞

௜ ሻ ൌ ቊ
1 ௞ܠ

௜ ∈ ୨࣠,୩ሺܘ୨,୩ሻ

0 ௞ܠ
௜ ∉ ୨࣠,୩ሺܘ୨,୩ሻ

 (180) 

 
In our framework, we explictly model this constraint by adding a penalty function ߶ to the 
measurement variance that assigns large variances to target measurements that would appear 
outside a particular sensor's FOV. This corresponds to the indicator function-like nature of the 
constraint: if a target lies within the sensor's FOV, then it is measured with some known 
variance; those outside the FOV are not measured at all, which contributes to greater uncertainty 
in the estimate of the state vector. However, since indicator functions are non-differentiable, they 
are difficult to implement and manage in realistic optimization schemes; hence, we replace the 
indicator with the penalty function.  
 
More formally, this extended concept of measurement variance can be given as  
 
௠௘௔௦ߪ 

ଶ ൌ ௠௜௡ߪ
ଶ ሺܘሻ ൅ ߶ሺݔ,  ሻሻ (181)ܘሺܸܱܨ

 
where ݔ is the measured quantity and ܘ is, again, a vector of sensor parameters (e.g., pixel 
angular subtense) that parameterizes both the minimum measurement variance ߪ௠௜௡

ଶ  and the 
sensor ܸܱܨ (which is a simpler function of the set ୨࣠,୩ሺܘ୨,୩ሻ) Simple penalty functions include 
scaled Heaviside step functions (and continuous approximations thereof, which are discussed 
below), as well as the "deadzone-linear" function [68]. Descriptions of more complicated penalty 
functions, like the log-barrier and Huber functions, can be found in Boyd & Vanderberghe [68] 
and references therein. Note that these formulations need to be shifted and/or scaled 
appropriately for each sensor's particular operation parameters. 
 
In the simulations in Section 4.8., we use a naive continuous approximation to the Heaviside step 
function, as the discontinuous nature of the step function makes less attractive for optimization. 
The unit step can be approximated using the hyperbolic tangent function [69]:  
 
 

ݔሺݑ െ ௢ሻݔ ൎ
1
2
ሺ1 ൅ tanhሺߥሺݔ െ  ௢ሻሻሻݔ

ൌ ሺ1 ൅ expሺെ2ߥሺݔ െ  .௢ሻሻሻିଵݔ
(182) 

 
for large values of ߥ, a shaping parameter. Examples of the approximation for certain values of ߥ 
are shown in Figure 1, which shows clearly that the larger the shaping parameter, the better the 
approximation. However, this comes with the caveat that a sharper transition near the FOV 
boundary is less amenable to numerical optimization schemes. With this approximation, our 
penalty function now becomes:  
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 ߶൫ݔ, ሻ൯ܘሺܸܱܨ ൌ
௫ߛ

1 ൅ exp ቀെ2ߥ൫ݔ െ ሻ൯ቁܘሺܸܱܨ
 (183) 

 
where, again, ߛ௫ is an appropriately large constant.  

  
Now that we have an appropriate means of modeling the effect of the finite FOV on 
measurement variance, we can apply it to the RF/EO system whose measurement equations were 
described in Section 4.5. For the pulse-doppler radar considered, the pulse repetition frequency 
(PRF) defines the FOV for both the range and range-rate measurements in the form of the 
maximum unambiguous values ܴ௠௔௫ and ሶܴ௠௔௫:   
 
 

ሻݎሺܸܱܨ ൌ ሾ0, ܴ௠௔௫ሿ ܴ௠௔௫ ൌ
PRFߣ
2

m (184) 

 
ሶሻݎሺܸܱܨ  ൌ ሾ0, ሶܴ௠௔௫ሿ ሶܴ௠௔௫ ൌ

ܿ
2PRF

m/s (185) 

 
where ߣ is the pulse carrier wavelength and ܿ is the speed of light. Similarly, for a 1-D EO image 
that is ௣ܰ௜௫ pixels wide with a detector (pixel) angular subtense (DAS) of ߙ radians, the FOV for 
the azimuth measurement is:  
 
 

ሻߟሺܸܱܨ ൌ ൤െ ௣ܰ௜௫ߙ
2

, ௣ܰ௜௫ߙ
2

൨ rad. (186) 

 
Since the FOV for the EO sensor is two-sided, the corresponding penalty function will also be 
"two sided," i.e. the sum of two approximations for each side of the domain. 
 
This penalty formulation forms the backbone of the control algorithm in Section 4.7. and is 
extensible to other sensing modes, provided there is a generally tractable set description of the 
FOV. We note that this formulation is reminiscent of “fuzzy set” membership , but we have not 
explicitly used fuzzy logic/set theory. 
 
4.7. Proposed Closed-Loop Control & Optimization Algorithm 
 
This section describes the proposed algorithm, which incorporates both a covariance control 
aspect and a parameter optimization aspect to account for the FOV constraint. The context and 
appropriateness of using this scheme in clutter is also discussed.  
 
4.7.1. Incorporating Finite FOV Effects in State Estimation 
 
The first step of the proposed method incorporates  finite field-of-view effects into the tracking 
scheme by replacing by replacing the solely parameter-dependent sensor/mode covariance ܀௝ 
with the parameter and target state dependent ܀෩௝

௜ ൌ ௝܀ ൅ Φ௝
௜, where Φ௝

௜ is a matrix formed from 
the per-mode penalties above. In the supervector formulation, this equates to replacing the  
measurement error covariance matrix ࣬ in the state-space and state estimation/association 
formulations above with a modified version, ෨࣬ , whose elements incorporate the penalty function 
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as given in Section 4.6. above. Nominally, we would require this true covariance to carry out any 
optimization or estimation; however, we cannot directly calculate ෨࣬  because we do not have 

access to the target state (and thus the true measurements). Instead, we use an estimate, ෨࣬෠ , that is 
obtained by evaluating the penalty functions at the predicted next-state measurements ෠ࣳ௞ାଵ|௞. 
This estimated covariance is then propagated through both the state estimation procedure and the 
optimization scheme discussed below. 
 
4.7.2. Adaptive Parameter Optimization Scheme 
 
As with any tracking system, our purpose in developing this control algorithm is to somehow 
improve tracking performance, which is usually characterized in perfect detection environments 
by minimizing mean-square tracking error. Likewise, our method selects the next-step sensing 
parameter vector ܘ௞ାଵ (and thus, indirectly, each mode's FOV) that minimizes, in a sense, an 
equivalent metric: a scalarization of the next-step filtered covariance matrix ௞࣪ାଵ|௞ାଵ. One 
commonly proposed scalarization is the trace weighted by an appropriate positive semidefinite 
matrix [70] ,[53] ܅, which assigns a designer-imposed importance value to particular 
components of the state vector or targets. An identical method, instead of minimizing the next-
step prediction covariance, would be to maximize some scalarization of the predicted information 
matrix ௞࣪ାଵ|௞ାଵ

ିଵ , or a component thereof [70]. We consider modifications of this cost function 
below. This method is related to other recent advances in sensor management (i.e. Kreucher, et 
al. [71]), where the objective function derives from more complex information metrics like the 
Renyi divergence. In the  case of the linear/non-linear Gaussian assumption, many of these 
metrics collapse to the predicted information matrix.  
 
4.7.2.1. Main Objective Function Selection 
 
The general form of the optimization problem we solve depends on the tracking matrix 
considered. Using the next-step filtered covariance matrix ࣪௞ାଵ│௞ାଵ implies we consider a 

minimization of the scalarization function. Conversely, if we scalarize the filtered information 
matrix ௞࣪ାଵ|௞ାଵ

ିଵ , then the goal is to maximize said scalarization. This latter form is the basis for 
the objective functions considered below. 
 
The first objective function is derived using equivalent maximizations and some approximations. 
If we initially choose the determinant as our scalarization, so the objective function is | ௞࣪ାଵ|௞ାଵ

ିଵ |, 
we note that maximizing this quantity w.r.t ܘ௞ାଵ is equivalent to maximizing log| ௞࣪ାଵ|௞ାଵ

ିଵ |. It 
can be shown that, using a Taylor series approximation and assuming the spectral radius of the 

information increase matrix ࣝ௞ାଵ
் ෨࣬෠ିଵሺܘ௞ାଵሻࣝ௞ାଵ is sufficently small, maximizing the log 

determinant is equivalent to maximizing ଴݂,஺௣௣௫ሺܘ௞ାଵሻ ൌ ݎݐ ቀ ௞࣪ାଵ|௞ࣝ௞ାଵ
் ෨࣬෠ିଵሺܘ௞ାଵሻࣝ௞ାଵቁ. We 

term this the "approximation" objective function. This cost function is also reminiscent of the 
aforementioned weighted trace of the filtered covariance; here, however, we weight the next-step 
information increase with the prediction error. 

 
We obtain the second objective function in our analysis in a much more straightforward manner. 
Following the concepts demonstrated in [70], [72], we note that the only portion of the perfect-
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detection filtered multitarget information matrix ௞࣪ାଵ|௞ାଵ
ିଵ ൌ ௞࣪ାଵ|௞

ିଵ ൅ ࣝ௞ାଵ
் ෨࣬෠ିଵሺܘ௞ାଵሻࣝ௞ାଵ that 

depends on the parameter vector is the right hand term, the so called “information increase” after 
the filtering step of the Kalman filter. Hence, instead of maximizing a scalarization of the entire 
information matrix, we only seek to maximize a scalarization of the information increase, 
hereafter referred to as MII. The associated scalarization chosen here is the determinant, thus the 

given objective function is ଴݂,ெூூሺܘ௞ାଵሻ ൌ |ࣝ௞ାଵ
் ෨࣬෠ିଵሺܘ௞ାଵሻࣝ௞ାଵ|. Note that this objective does 

not include the prediction error which, as we will see later, affects the convergence of the 
algorithm. 
 
In either case, the basic optimization problem is now: 
 
 max

ೖశభܘ
଴݂ሺܘ௞ାଵሻ 

s. t. ܔ ≼ ௞ାଵܘ ≼ ܝ
(187) 

 
where ଴݂ሺܘ௞ାଵሻ is one of the objectives described above, the vectors ܝ and ܔ contain the 
maximum & minimum possible sensor parameter values, respectively, and the operator ≼ 
denotes an elementwise vector inequality. 

 
4.7.2.2. Minimum Information Quality: Soft Constraints 
 
While we readily admit that the fundamental conception of the initial optimization problem is 
seemingly basic, the field-of-view limitation adds a significant wrinkle to the situation heretofore 
unexamined. This problem is that, even with the penalty function formulation, merely 
maximizing the information metrics in the previous subsection could potentially drive multiple 
sensor/modes to low variance/highly restricted FOV settings, focused on a single target (or 
indeed, no target if the estimation procedure diverges) at the expense of the remaining targets to 
be tracked. That is, it is possible for ܘ௞ାଵ to maximize the overall cost function at the expense of 
providing almost no new information about a particular target. This leads to an overall 
performance degradation that may not be accurately reflected in the primary objective function. 
This is clearly behavior we wish to avoid, so it becomes necessary to introduce an additional 
constraint 
 
However, one should not take this to mean the solution is to artificially constrain every mode to 
maintain every target within its view at all times. Indeed, such a constraint would defeat the 
purpose of the penalty functions, whose intent is to encode the indicator non-linearity in a “soft” 
manner. Instead we recognize that it is more important to maintain each target’s overall track 
quality, and let that be the guiding principle behind the constraint.  
 
Given the objective functions, we can derive nonlinear constraints for the optimization that avoid 
mode hyperfocus. Noting that the matrices are all block diagonal, partitioned by the associated 
target, we observe that each objective function is composed of a sum or product of similarly 
constructed per-target functions. Since we wish to maintain a certain baseline amount of 
information, we impose a lower threshold ݐ on the smallest per-target function, corresponding to 
the target that contributes the least in the next step. Assuming that the function ݃ሺ௜ሻሺ⋅ሻ is 
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functionally identical to the primary objective ଴݂ሺ⋅ሻ, but operates on the per-target matrices of the 
i th target, we can express this new constraint as  
 
 min

௜
݃ሺ௜ሻሺܘ௞ାଵሻ ൒  (188) ݐ

 
With this new constraint, the final optimization problem becomes: 
 
 max

ೖశభܘ
଴݂ሺܘ௞ାଵሻ 

s. t. min
௜
݃ሺ௜ሻሺܘ௞ାଵሻ ൒  ݐ

ܔ ≼ ௞ାଵܘ ≼ ܝ .

(189) 

 
4.7.3. Algorithm Modifications for Cluttered Sensing 
 
As in the ideal sensing case, tracking metrics like mean-square state estimation error and next-
step information increase [72] remain important, since accurately determining target position is a 
primary purpose of these types of data fusion systems. However, in uncertain measurement 
environments, it is also critical to examine costs that include association metrics. An example 
objective might be to maximize the overall probability of correct association for a particular 
(sub)set of sensing modes. For soft association methods like the one presented above, however, 
analytically formulating this metric is difficult due to the non-deterministic nature of 
measurement-to-track hypothesis generation. Furthermore, it is not clear that improving 
association without regard to the tracking performance has many, if any, benefit. A hybrid 
approach to managing the tracking and association goals is to optimize a function of the 
validation regions for each mode, as advanced in [53], which affects both association 
probabilities and tracking error.  
 
With these concepts in mind, we instead chose to naively apply the same algorithm to the 
cluttered case, with minor modifications for the particularities of the state estimation. The 
covariance control aspect augments the MSJPDA/EKF scheme from Section 4.5 by replacing the 
solely parameter-dependent sensor/mode covariance ܀௝ with the parameter and target state 
dependent ܀෩௝

௜ ൌ ௝܀ ൅ Φ௝
௜, where Φ௝

௜ is a matrix formed from the per-mode penalties above. 

However, since ܀෩௝
௜  requires evaluating the penalty at the actual target state (which is unknown), 

we instead use the estimates of each target state from each stage of the sequential MSJPDA, and 

thus introduce an estimated penalized covariance ܀෩෡௝
௜ . This has the effect of reducing the 

validation region size as each subsequent mode’s measurements are processed. 
 
The parameter optimization problem remains essentially unchanged. Incorporating the 
constraints, the final optimization problem is as in Section 4.7.2:  
 
 
 max

ೖశభܘ
଴݂ሺܘ௞ାଵሻ 

s. t. min
௜
݃ሺ௜ሻሺܘ௞ାଵሻ ൒ ݐ  

ܔ ≼ ௞ାଵܘ ≼ ܝ . 

(190) 
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where ≼	indicates elementwise inequality, ݐ is the minimum information threshold, and ܔ,  are ܝ
system-imposed lower & upper bounds on the parameter vector. The block matrices ௞࣪ାଵ|௞,

ࣝ௞ାଵ
்  and ෨࣬෠ିଵሺܘ௞ାଵሻ that appear in the two cost functions possible for ଴݂ሺܘ௞ାଵሻ are formed by 

concatenating first by sensor, then by target, the per-target/per-sensor error covariances ۾௝
௜, 

measurement Jacobian matrices ۱௝
௜, and augmented measurement covariances ܀෩෡௝

௜  (evaluated at 

the next-step predicted state ܠො௞ାଵ|௞
௜ ), respectively. All of these values are derived from their final 

estimates at their stage in the MSJPDA process. It may seem short-sighted to employ the same 
optimization problem for the cluttered scenario, since the above described optimization problem 
was initially constructed to  minimize tracking error in ideal detection/association situations, but 
as we will show in Section 4.8., these cost functions remain effective in clutter and result in 
benefits for association as well.  
 
We note that it is possible to augment our cost functions with the hybrid covariance 
approximations or modified Riccati equations presented in [66], but these result in significantly 
more complex cost functions that require further investigation. Preliminary investigations 
demonstrated that incorporating the approximation is necessary in both the covariance update 
and the optimization cost function; otherwise, the cost function under-estimates the resulting 
covariance decrease and provides inconsistent results.  
 
4.8. Simulations and Results 
 
This section describes a variety of comparative analyses for the algorithm developed during the 
project. These analyses demonstrate the utility of the algorithm described above, as well as the 
necessity of incorporating field-of-view effects into multimodal sensing systems. 
 
Many of the simulations below share common parameters and values, regardless of the target 
scenario or sensing environment considered. Unless otherwise specified, the simulations consider 
a tracking period of 500 seconds with a sample period of one second. Two RF/EO multi-mode 
sensors -- located at the ሺݔ,  -- ሻ positions (-1 km, -1 km) (Sensor 1) and (1 km, -1km) (Sensor 2)ݕ
are stationary with X-band ( ௖݂ ൌ 10 GHz) radars with pulse-doppler processing & one-
dimensional 1000 pixel EO modes with a detector-angular-subtense (DAS) between 10ିହ and 
3 ൈ 10ିଷ radians/pixel and a look direction of 0 degrees. At each time step, the RF sensors 
provide range and range-rate measurements, while the EO sensors provide azimuth 
measurements. The sensor parameters are initialized in varying configurations, but generally in a 
manner that ensures the targets are initially contained within their FOV. 
 
4.8.1. Ideal Sensing Environment Analysis 
 
This subsection covers the primary tracking results for the ideal measurement scenarios. The 
general simulation parameters described above apply unless otherwise noted.  For comparison, 
we also commonly simulate the scenario and generated target tracks for a similar non-adaptive 
method. 
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4.8.1.1. Primary Multiple Target Tracking Results 
 
The results considered here demonstrate the tracking performance of the proposed method in an 
ideal sensing scenario with three targets in the region of interest.  
 
Beyond the common simulation parameters, this example assumes the following: Both sensors 
were initialized with identical system parameters (PRF and bandwidth for the RF sensor, DAS 
for the EO sensor. The starting positions for the targets are at (-1 km, 1 1km) (Target 1), (1 km, 
1km) (Target 2), and (0 km, 1km) (Target 3), which then move with randomly generated 
trajectories that evolve according to the constant-velocity state model with a multiplicative 
variance q = 0.1. Initial position estimates were chosen to be about midway to the actual 
positions with a large error variance. For comparison, we also simulated the scenario and 
generated target tracks for a non-adaptive method; that is, where the sensor parameters remained 
constant. 
 
Figure 10 provides a visualization of the tracking performance of the adaptive method, showing 
the actual and predicted target positions over the entire simulation, as well as the locations of the 
sensors. For clarity, the actual (or predicted) position of the target is indicated with a marker that 
is either indicated in the legend or in the color of the track plot. Clearly, the adaptive method is 
able to handle a situation where the number of targets exceeds the number of sensors, as all the 
trajectories of all three targets are able to be followed by the adaptive method. 
 
Figure 11 summarizes the RMS predicted position error for each target throughout the simulation 
for both the adaptive and non-adaptive methods, numerically confirming the results from Figure 
10. Both targets 1 and 2 show noticeable improvement in tracking error with the adaptive method 
over that of the non-adaptive method while target 3's tracking error remains quite low. Due to the 
initial sensor parameters given and the movement of target 3, the difference is not as noticeable. 
 
Since the tracking performance seems accurate, it is critical to analyze how the sensors measured 
these tracks, and thus, the obtained policies. Figure 12 displays the evolution of the sensor 
parameters for the adaptive method throughout the tracking period. As the ranges of all 3 targets 
increases relative to the sensors (particularly from 50-150 seconds), we can see that the 
algorithm once again follows the known ranging technique of alternating PRFs until a certain 
quiescent point is reached (in terms of per-step error/information). Since the initial bandwidth 
was relatively high (10 MHz, which corresponds to about 19 meters in range variance), there was 
little need for variation, except towards the end of the ranging period where more accurate range 
information is required. Finally, we can see that evolution of each EO sensor's DAS 
demonstrates a tradeoff between sensors. Since Target 1's motion is primarily directly above 
Sensor 1, that sensors narrows its field of view (but also obtains finer azimuth measurements) by 
lowering the DAS. This is also initially the case for Sensor 2, as Targets 2 and 3 have restricted 
angular movement. Past a certain point (~150 seconds), however, these targets rapidly move out 
of this FOV, which prompts the algorithm to select a larger DAS (and thus a wider FOV); this 
continues until the maximum value is reached as the azimuth of these targets increases relative to 
Sensor 2. 
 

Approved for public release; distribution unlimited



   

  62  
 

 
Figure 10. Three-Target Ideal Sensing Scenario Tracks 

 
 

 
Figure 11. RMS Position Error for Three-Target Ideal Scenario 
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Figure 12. Parameter Evolution for Three-Target Ideal Scenario 
 
 
4.8.1.2. Comparison of Objective Functions 
 
This analysis demonstrates the comparative performance in the ideal sensing scenario between 
the two objective functions (trace approximation and MII) discussed in Section 4.7. In this case, 
we analyze a two target scenario consisting of targets 1 and 2 from the analysis above.  
 
In addition to the common simulation parameters, these results assume the following: The 
starting positions for the targets are at (-1 km, 1 1km) (Target 1), (1 km, 1km) (Target 2), and (0 
km, 1km) (Target 3), which then move with randomly generated trajectories that evolve 
according to the constant-velocity state model with multiplicative variance q = 0.1. 

 
Figure 13 visualizes the tracking performance of the two adaptive, as well as the non-adaptive 
method. Each track is denoted by a path, supplemented by a marker in the legend denoting the 
method employed. In the legend, “A” denotes the tracks formed from the two adaptive methods, 
using either the approximation objective (“Appx.”) or the maximum information increase 
objective (“MII”). The sensor locations are also marked as blue trianglesfor comparison. For 
both targets, we can see that the adaptive methods both converge much quicker than the non-
adaptive method on the actual target track, and follow it much more closely. Comparing the 
adaptive methods, we see that using the MII objective function results in faster track 
convergence. 
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Figure 13. Target Tracks for Objective Function Comparison Analysis 

 
Figure 14 summarizes the RMS predicted position error for each target throughout the simulation 
for the adaptive and non-adaptive methods, numerically confirming the results from Figure 10. It 
is clear that adaptation using the MII objective function results in much faster convergence than 
either the non-adaptive method or the adaptive method with the approximation objective. 
Furthermore, using the MII function results in lower positioning error than the other methods 
despite a period of apparent divergence around 200 seconds. 
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Figure 14. RMS Position Errors for Objective Function Comparison 

 
In order to complete the comparison, it is again critical to analyze the obtained sensing policies. 
Figure 15 and Figure Figure 16 display the sensor parameters for the adaptive methods 
throughout the tracking period corresponding to the approximation and MII objective functions, 
respectively. The parameter evolution for the first objective adaptive method is nearly identical 
to the previously investigated situation in the previous subsection, with classical rangefinding 
behavior in the pulse repetition frequency (PRF), relatively static pulse bandwidth, and one EO 
mode (in this case, Sensor 2's) gradually widening its FOV to capture a laterally moving target 
(here, Target 2). The picture presented for the MII objective function, however, is less intuitive. 
Some rangefinding behavior in the PRF occurs at the beginning, with small follow-ups 
throughout the tracking period. This limited initial rangefinding is counterbalanced by a ramping 
up of pulse bandwidth in the beginning period; later, the bandwidth decreases to close to the 
original setting, with some perturbations. In terms of the EO modes, the MII optimization 
scheme chooses to widen both sensors' optical FOV slightly between 50 to 275 seconds, 
corresponding to both targets having significant lateral movement. As Target 1's motion becomes 
more horizontal (and thus more "in front" of Sensor 1), Sensor 1's EO mode focuses in on the 
target; conversely, Sensor 2 broadens its FOV further to manage the continued lateral movement 
of Target 2. 
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Figure 15. Parameter Evolution for Adaptive Method with Approximation Objective  

 
 

 

Figure 16. Parameter Evolution for Adaptive Method with MII Objective  
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From these simulations, it is clear that the MII approach provides better tracking performance 
overall; however, this is but one possible example of the benefit of appropriate selection of 
objective function.  
 
4.8.2. Cluttered Sensing Environment Analysis 
 
As in the perfect sensing examples above, the simulations considered below share the common 
simulation parameters described at the beginning of the section. Thre are also simulation 
parameters common to the cluttered environment analysis. In most cases, the probability of 
detection is ஽ܲ ൌ 0.9 for all sensor/modes. In addition, the clutter densities (within the sensor's 
FOV) for the RF and EO sensing modes are ̅ߣோி ൌ 2 ൈ 10ି଻ and ̅ߣாை ൌ 10ିହ, respectively. 
 
4.8.2.1. Multiple Target Tracking Results 
 
This subsection presents the general tracking results for our proposed algorithm in a cluttered 
sensing environment. The target scenario considered is the familiar two target randomly-
generated trajectory example of the ideal-sensing sections. All parameters and starting points are 
as detailed above. 
 
Figure 17 through Figure 23 detail the target trajectories, tracking error, and parameter evolution 
of an example run of the tracking algorithm employing the MII objective criterion described in 
Section 4.7. The reason for this objective will be made clear later in the section. As can be seen 
in Figure 17, the non-adaptive method has significant problems converging to the correct target 
trajectories, experiencing track loss very quickly as the targets move out of the initial FOV and 
additional false measurements are obtained. Comparatively, the adaptive method’s tracks, as 
shown in Figure 18, converge quickly and accurately to the true trajectories. Confirming this 
observation, both the position (Figure 19) and velocity (Figure 20) errors are quite signficant for 
the non-adaptive method, but rather manageable (within a meter or so) for the adaptive scheme. 
Figure 21 through Figure 23 provide us with a look at the evolution of the sensor parameters. For 
the RF sensor, we can clearly see constant ranging behavior (alternating between higher and 
lower PRFs), as well as an initial trade-off period of pulse bandwidths (and thus range 
resolutions). For the EO sensor, we can see that the system opens the FOV by increasing the 
DAS at points where the target motions deviate from the assumed linear dynamics. 
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Figure 17. Target Tracks for Non-adaptive Method in Clutter 
 
 
 

 

Figure 18. Target Tracks for Adaptive Method in Clutter 
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Figure 19. RMS Position Error for Clutter Scenario 
 
 

 

Figure 20. RMS Velocity Error for Clutter Scenario  
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Figure 21. Adaptive PRF Evolution for RF Mode in Clutter 
 
 
 

 

Figure 22. Adaptive Bandwidth Evolution for RF Mode in Clutter 
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Figure 23. Adaptive DAS Evolution for EO Mode in Clutter 

 
 
We note that this general behavior holds over many Monte Carlo trials regardless of the 
objective, but with a few caveats. First, the worst-case target constraint threshold must be set 
smaller than in the ideal sensing environment as the inital uncertainty about the target state 
increases to maintain stability. This is due to the normalizing effect of the error covariance on the 
constraint objective. Second, as with the non-cluttered scenario, the initial set of sensor 
parameters (as well as where the optimization point method is initialized, though these are 
usually the same) must be chosen carefully so as to provide as high-quality initial measurements 
as possible and to avoid local minima in the optimization method. Finally, we note that FOV 
adaptation using the determinant approximation objective has the tendency to favor one target 
over the other, which can lead to divergence for a subset of the targets considered. This is likely 
due to the approximation breaking down in the presence of the clutter and the decreased 
information gains imposed by the measurement uncertainty.  
 
4.8.2.2. Improvements in Data Association 
 
In this section, we consider the potential benefit of our method to data association as compared 
to a non-adaptive method. In previous technical reports and papers, the primary goal has been to 
track the dynamic states of a set of targets with the least amount of error possible. While this is 
indeed a reasonable goal, and one that we have generally achieved with our adaptive method, 
there are other metrics by which we can judge the success/benefit of a given tracking algorithm. 
This is especially true if we analyze cluttered measurement environments, where the importance 
of correct data association cannot be discounted. While data association does have a major 
impact on tracking error, etc., it also sheds light on additional effects of adaptation that may not 
be examined through tracking error alone, like the impact of sensor field-of-view on 
measurement validation and clutter reduction. 
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There are many methods to evaluate & compare the data association capabilities of various 
tracking algorithm, but a simple first-pass metric is the single-scan misassociation probability 
(and related metrics of correct and no association probabilities). As the name implies, this 
measures the probability of incorrectly associating a measurement to a target that did not 
originate it. We can surmise that if one method provides lower misassociation (higher correct 
association) probabilities than another, then the first method is superior to the second in some 
fashion. We note that our current method of data association, in regards to direct measurement-
to-target association, appears difficult to directly analyze with this metric, primarily because 
JPDA is a soft association method. That is, it does not directly provide measurement-to-target 
associations; rather, it calculates association probabilities and then uses these to weight each 
measurement's contribution to the state update. Despite this apparent contradiction, we can still 
create equivalent hard associations by assigning measurements to their most probable source. In 
practice, this is accomplished by determining the hypothesis with the maximum association 
probability for each measurement, and declaring that as the obtained association. 
 
For this simulation and all subsequent simulations, we consider a novel maneuvering target 
scenario: two targets that nearly cross, so as to provide a major association & validation 
challenge for our method. The scenario is illustrated in Figure 24 with Target 1 in blue, Target 2 
in red, and their respective markers indicating position every 50 seconds, starting from the left 
(bottom) for Target 1 (2). Target 1 moves rightwards at 12.5 m/s from 0 to 200s, executes a 1.8 
degree/sec counterclockwise turn for 50s, and then moves upwards at 4 m/s until the end of the 
tracking period. Target 2 moves upwards at 5 m/s from 0 to 200s, then executing a 1.8 degree/sec 
clockwise turn for 50s, and finally moves rightwards at 4 m/s until the end of the tracking period. 
During their coordinated turns, the targets are about 50-100 meters apart. In this case, we 
consider the approximation objective which, as we will see, handles this scenario in a slightly 
more graceful manner than the randomly-generated trajectory instance.  
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Figure 24. Maneuvering Target Scenario Trajectories for Clutter Analysis 

 
 
Figure 25 below demonstrates the association results from an example 200-iteration Monte Carlo 
run, plotting each sensor type's average probability of correct association for the adaptive method 
under consideration and a non-adaptive method. It is clear that for every sensor considered, the 
data association is greatly improved by the adaptive method. Note, however, that this quantity is 
specified for "non-empty" associations; that is, periods that had measurements. This is a 
particularly important point, because the adaptation can result in an extended period of no 
measurements for a given sensor. This occurs when the chosen field-of-view is so small that the 
targets are out of view and the expected number of false measurements is nearly zero. In our 
analysis, it appears that extended no-measurement (and thus no-association) periods are quite 
common for EO sensors in the adaptive scheme, with no-measurement periods extending to 90% 
of the tracking period in some cases. For the non-adaptive scheme, extended no-measurement 
periods (again, particularly focusing on the EO sensors) are comparatively rare, occuring about 
20% of the tracking periods.  
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Figure 25. Probability of Non-Empty Association Comparisons 
 
 
This behavior may seem strange, but in terms of our algorithm, there is a basis for it: Since the 
goal of the objective function is to maximize the information increase subject to a minimum per-
target threshhold, the adaptive scheme instead shuts out sensors that cannot meet the threshold 
(and thus contribute to accurate target measurements) to avoid introducing further clutter & error 
into the state estimation. By comparison (and this is verified by our simulations), the non-
adaptive method suffers by keeping the EO modes’ FOV large, leading to misassociation with 
clutter and incorrect target associations, especially during the turning maneuvers. This also 
applies to the RF modes to a lesser extent, particularly in the range measurement.  
 
4.8.2.3. Necessity of Adaptivity and Compensation: Algorithm Comparisons 
 
This subsection demonstrates the necessity of both aspects of our proposed algorithm. The 
central concept of this body of work is compensating for field-of-view limitations in various 
sensing modes, which allows for each mode to intelligently complement the others in an 
integrated system. However, as mentioned in Section 4.7. above, this core concept is expressed 
and implemented separately in two areas of the process. The primary mechanism is the 
parameter adaptivity, embodied by the optimization problem, which uses predicted information 
statistics to select each mode's next operation regime. The FOV penalty is introduced into the 
information cost function through an additional measurement covariance term. Covariance 
control in the state update & association step forms the second pillar of the algorithm, embodied 
by inclusion of the measurement covariance penalty estimated at the time of the update. 
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So far, we have usually compared the fully adaptive/compensated method to a non-adaptive/non-
compensated method. In order to determine the overall benefit of each aspect, we must consider 
other combinations of adaptivity & compensation. To this end, four additional algorithms 
(labels) are considered:  
 
(1) static mode parameters, penalized covariance compensation (STATIC/PC) 
(2) adaptive parameter selection without FOV cost penalty, no compensation (ADAPT-NP/NC) 
(3) adaptive parameter selection with FOV cost penalty, no compensation (ADAPT-P/NC) 
(4) adaptive parameter selection without FOV cost penalty, penalized compensation (ADAPT  
      NP/PC). 
 
Each of the 6 methods considered, including the previously considered completely non-adaptive 
(STATIC/NC) and the proposed fully adaptive (ADAPT-P/PC) methods, have been analyzed on 
both tracking and association grounds, since both are critical to effective integration. 
 
The scenario presented is the so-called “challenge” target scenario in the subsection above: two 
targets maneuvering away from each other in coordinated turns, tracked by two multimode 
RF/EO sensors initialized with identical settings over 500 seconds. Coordinated turns and 
extended motion away from the initial FOVs provide a challenge to the tracking algorithms, 
requiring appropriate control sequences to use both sensing modes to their maximum potential. 
Results were obtained from a series of 200 Monte Carlo trials. 
 
First, the algorithms are compared on tracking error. Figure 26 and Figure 27 show the root-
mean-square error of each of the above-described methods for position of Target 1 and 2, 
respectively. Figure 28 and Figure 29 show the root-mean-square error for velocity of Targets 1 
and 2. All of the methods experienced divergence toward the end of the tracking period, which is 
generally expected for the MSJPDA implementations employed here, as well as in situations 
employing the approximation objective. As has been shown in previous works, the completely 
non-adaptive STATIC/NC method performs poorly for both targets, achieving the largest error 
and diverging the quickest in each case. In most cases, it is clear from the figures that tracking 
performance is improved by including the field-of-view covariance penalty in the update (the 
“/PC” subset of algorithms, as shown by the dotted lines), especially for the first target. Adding 
adaptation only further improves performance, as both ADAPT-NP/PC and the previously 
proposed ADAPT-P/PC both consistently attain the lowest error by the end of the tracking period 
and handle the maneuver (starting around 150 seconds) gracefully. The fact that a non-penalized 
cost function provides the best tracking performance may seem surprising at first; however, the 
compensation in the update step essentially overestimates the optimized variance resulting in 
lower error. Furthermore, the difference between ADAPT-NP/PC and ADAPT-P/PC is relatively 
small, and ADAPT-P/PC remains fairly unchanged when ADAPT-NP/PC starts to "go off the 
rails." 
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Figure 26. RMS Position Error Comparison for Target 1 
 

 

Figure 27. RMS Position Error Comparison for Target 2 
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Figure 28. RMS Velocity Error Comparison for Target 1 
 

 

Figure 29. RMS Velocity Error Comparison for Target 2 
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As mentioned above, association performance is also an important component of evaluating 
these algorithms. The metric considered here is probability of “non-empty” correct association, 
i.e., correct association when a measurement is made, which is also the metric considered in 
Section 4.8.2. above. Figure 30 shows this metric for each mode of the two sensors in the 
scenario. Once again, STATIC/NC is the across-the-board loser, failing to break even 50 percent 
across all modes. The rest of the algorithms demonstrate very similar performance for the RF 
mode, with the ADAPT/PC algorithms as clear leaders, exceeding the next best methods by at 
least ten percent. The EO mode, however, is a different story altogether. STATIC/PC emerges as 
a strong contender in this respect, primarily because the penalized covariance results in a more 
precise validation region in spite of the lack of adaptivity. Furthermore, the primary flaw in 
ADAPT-NP/PC is exposed: the better tracking performance is obtained at the expense correctly 
associating measurements. The low association performance also comes with many periods of 
effective inactivity, where no measurement is detected at all. Examinations of sample policies 
reveal this is the result of frequent switching between high- and low-visibility regimes. In 
contrast, the proposed ADAPT-P/PC algorithm complements its very good tracking performance 
with exceptional association performance, outpacing ADAPT-NP/PC handily. While analysis 
shows that this algorithm also has many non-measurement periods for the EO mode, it is not 
nearly as much as ADAPT-NP/PC. This results in a nearly 99 percent correct association rate for 
sensor 1 -- when it makes a measurement, it makes it count. Thus, the proposed ADAPT-P/PC 
has been shown to provide good balance between and overall effectiveness in both tracking and 
association. 
 

 
Figure 30. Probability of Non-Empty Association Comparison 
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4.9. Conclusions 
 
We demonstrated that the field-of-view constraint is a necessary consideration in any multi-
target tracking system, but especially for those that use multi-modal sensing mechanisms. In 
order to effectively reap the benefits of the multiple modalities, a comprehensive understanding 
of their limitations is essential. Additionally, we devised an appropriate modeling mechanism 
that accounted for the FOV effect in a simple, but robust fashion. The variance penalty captures 
the essential feature of a missed measurement due to a target being out-of-view – increased 
estimation uncertainty – while also being simple to include in the estimation procedure and the 
parameter optimization process.  
 
The compensation and optimization scheme is also a significant advance. We showed that by 
keeping the multi-modal sensing concept in mind resulted in a straightforward means to mitigate 
the FOV effect in the state estimation procedure and derive effective objective functions and 
constraints for parameter selection. This algorithm was shown to be beneficial in terms of 
tracking performance in both ideal and cluttered conditions, for random and maneuvering targets. 
Furthermore, we demonstrated that the algorithm resulted in improved data association over non- 
and lesser-adaptive methods with little modification from the perfect detection scheme. Finally, 
we demonstrated that both aspects of this method, penalized feedback compensation and 
penalized parameter adaptation, are necessary to completely mitigate the FOV effect. While the 
adaptation without penalization can provide marginally better tracking performance, the fully 
penalized method made up for the minimal tracking deficit by improving association capabilities 
significantly. This demonstrates an inherent tradeoff between tracking and association 
performance, one that our method deftly balances. 
 
The key advantage of multi-modal sensors is the associated increase in degrees of freedom 
available for target detection, tracking and association.  The ability to exploit this additional 
flexibility requires the use of adaptive or "cognitive" sensing techniques that take the current 
operational scenario into account and adjust the sensor parameters accordingly.  In the RF-EO 
sensors studied as part of this effort, these parameters include the EO field-of-view (FOV) and 
resolution, as well as the radar bandwidth and pulse repetition frequency.  If these parameters are 
not carefully chosen, new targets will be missed, tracking errors will diverge and track 
associations will be lost.  Our contribution is an automated method for adapting the RF-EO 
multi-model sensor operation so that it minimizes the likelihood of such events.  Rather than just 
using a brute-force approach where one steps through all possible combinations of the sensor 
parameters (clearly not a realistic solution when several multi-model sensors are present with 
multiple degrees of freedom), the sensor's operation is adjusted according to the currently 
detected targets and their associated tracks using an automated procedure that takes into account 
the competing objectives associated with tracking multiple maneuvering targets. The system 
operation then alternates between this target-scenario-optimized behavior and a wide-FOV 
search for new targets.  Our simulation results indicate that order-of-magnitude improvements 
and better are possible using our adaptive approach compared with static, non-adaptive sensor 
settings. These results are consistent with other work on cognitive radar, and provide strong 
motivation for their continued study. 
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5. Tracking and Waveform Agility 
 
5.1. Methods, Assumptions, and Procedures 
 
Sensing systems with multiple modalities and multiple interactive processing capabilities are 
expected to achieve high target tracking performance. Specifically, reduced detection false alarm 
rate, and thus reduced target tracking error, result from combining kinematic feature information 
from radio frequency (RF) radar sensors with physical feature information from electro-optical 
(EO) sensors in an asymmetric multi-modal tracking system [73]. For example, an RF radar in 
ground moving target indicator (GMTI) mode or high-range resolution radar (HRRR) mode uses 
a wide field of view (FOV) to track moving targets whereas a modally asymmetric EO sensor in 
staring imaging mode uses a narrow FOV to identify stationary targets [74]. Adopting the joint 
asymmetric RF-EO modality can be further exploited in complex challenging sensing scenarios, 
including low signal-to-noise ratio (SNR), high clutter or interference, weather environmental 
conditions, and light intensities. Multi-modality sensing can be further integrated with intelligent 
processing techniques, such as radar waveform parameter and EO resolution parameter 
configuration or advanced Bayesian techniques to increase tracking performance.  
 
Low observable targets require many unthresholded measurements to increase their probability 
of detection. This is because, as the strength of the received signal depends on the target’s radar 
cross section (RCS) and the distance from the radar to the target, and radars with limited aperture 
size, transmit power, or duty cycle have low probability of detecting smaller objects from great 
distances, thresholding low SNR targets forces a trade-off between low probability of detection 
(PD) and high probability of false alarm (PFA). One technique that uses unthresholded matched 
filter measurements to estimate the target state is the track-before-detect (TBD) algorithm, 
implemented using particle filtering (PF-TBD) [76, 77]. This is an approach that performs target 
tracking while detecting, as the tracking iterations are initiated by a set of possible tracks that 
depend on all available matched filter measurements. In this work, RF-EO multi-modal low SNR 
tracking of targets with different energy returns was investigated using the PF-TBD approach. In 
a classical target tracking processing problem, detection is first performed by matched filtering 
or thresholding the RF-EO measurements collected at each time step. However, as returns from 
different scenes may experience different energy levels,  this can lead to a loss of information in 
the measurements as it would be difficult to find an appropriate threshold level to use  in all 
possible scenes. This can be avoided using the PF-TBD as it only uses unthresholded 
measurements. 
 
The PF-TBD algorithm is expected to improve sensing performance in low SNR scenarios. 
However, as a tradeoff, the volume of data gathered by sensors often places an overwhelming 
demand on signal processing and results in redundant resource consumptions, especially when 
incorporated with EEF. On the other hand, adapting the transmit waveform can contribute to 
more accurate state estimates. Therefore, the ability to intelligently direct sensor configurations 
have a significant impact on the performance of a sensing system [78]. Dynamic waveform 
adaptation provides a sensing methodology to design the next transmitted waveform to optimize 
the tracker's requirements. The system level optimization yields better tracking performance than 
optimizing the sensors and tracker independently [79, 80].  In this work, an agile-waveform 
design scheme has been integrated into the PF-TBD algorithm, which can configure the 
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transmitted waveform on a pulse-to-pulse basis to obtain the information that optimally improves 
the tracker's performance according to requirements. The performance criteria in the  is the 
predicted mean-squared error, which is approximately evaluated using the Cramér-Rao lower 
bound (CRLB) at each time step [81, 82, 84]. 
 
Although RF and EO sensors observe the same scene at the same time, the measurements are 
assumed independent from RF cell to cell and EO frame to frame for ease of processing. 
However, unless the measurements are asynchronous, this assumption is not very realistic. When 
the measurement noise in the range-Doppler plane and the azimuth plane are assumed dependent 
and with unknown correlation parameters, the challenge is how to appropriately process them. In 
this work, the exponentially embedded family (EEF) estimation method is adopted and 
integrated into the PF-TBD algorithm to approximate the unknown probability density function 
(PDF) of the dependent measurements [85]. The method asymptotically approximates an 
unknown PDF with the exponential family PDF that is closest to it using the Kullback-Leibler 
(KL) divergence measure [80, 82].  
 
When thresholding is used, increasing the threshold to increase the probability of detection 
requires more measurements; but that can cause an increase in the probability of false alarm. 
However, the additional measurements can exponentially increase the computational complexity 
of multiple target tracking (MTT) algorithms, such as the joint probabilistic data association 
(JPDA) and the multiple hypothesis tracking [87]. Tracking a time-varying number of targets 
under low SNR and high clutter is still considered a difficult problem in radar. The PF-TBD has 
been extended to tracking two targets, when the second target spawns from the first target [76]; a 
multi-camera multi-target tracking algorithm based on particle clustering [88]. The recursive 
TBD algorithm is generalized to track multiple targets by estimating the joint posterior density of 
their state vector while keeping track of targets entering and leaving the FOV at any time step. 
The new multiple-mode multiple-target PF-TBD algorithm is based on estimating the posterior 
probability density of the target states under different modes in order to consider all possible 
target existence combinations at each time step [89]. 
 
The same trend towards increased processing capabilities has led to the development of multiple 
target tracking algorithms for a known number of targets, such as the joint probabilistic data 
association (JPDA) [90] and multiple hypothesis tracker (MHT). Recently, a new tracking 
algorithm, the probability hypothesis density filter (PHDF), is being used for multiple target 
tracking [91]. The PHDF is based on the theory of random finite sets to simultaneously track 
multiple targets, propagating a first-order statistical moment of the random finite set. Unlike the 
JPDA and MHT, the PHDF does not need to know a priori  the number of targets, as the number 
of targets is estimated as part of the tracking algorithm.  In this work, the multiple target tracking 
capabilities of the PHDF is combined with dynamic waveform selection based on the predicted 
mean-squared error (MSE). A time varying number of targets are tracked, and the predicted MSE 
of individual targets is used to select the waveform used at the next time step, resulting in a 
single integrated multiple-target, waveform-agile tracker [92]. 
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5.2. Multi-Modal Track-Before-Detect for Low Observable Targets 
 
We developed the particle filter (PF) based recursive track-before-detect (TBD) approach for 
joint asymmetric multi-modal radio frequency (RF) radar and electro-optical (EO) sensing to 
avoid loss of information caused by matched filter thresholding at low SNR [81]. This work was 
performed in collaboration with the PI, Muralidhar Rangaswamy. 
 
5.2.1.   Target State Model for Track-Before-Detect 
 
We consider an RF-EO asymmetric multi-modal sensing system for tracking a point target 
moving in a two-dimensional (2-D) space under low SNR conditions. The unknown target state 
vector T

kkkkk yyxx ][ x , where T  denotes vector transpose, at time step k  consists of the 2-D 

Cartesian coordinates of the target’s position (xk , yk ) and velocity ),( kk yx  . The state evolution, 

assuming constant velocity model,  is  
 
 xk  F xk1 wk (191) 
 
where 
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t  s is the time between steps, and kw  is the modeling error random process, which is assumed 

zero-mean Gaussian with noise intensity q  and covariance matrix 
 
 

Q  q
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
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(193) 

 
Depending on the presence of a target in a scene, the TBD algorithm describes these state 

transitions as a jump Markov system with Markov matrix 
   

    












b

k
d

k

b
k

b
k

k
Pr1Pr

PrPr1
 . The 

probability of a target entering and leaving the scene at time k  are, respectively, given by 
Prk

b   Pr Ek 1 | Ek1  0  and Prk
d   Pr Ek  0 | Ek1 1 . Here, the binary variable kE  is used 

to formulate the presence or absence of a target at time step k . Specifically, it is assumed that 
the target is present if 1kE  and absent if 0kE . 
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5.2.2.   RF-EO Multi-Modal Measurement Model for Track-Before-Detect 
 
The symmetric or asymmetric fusion of radio frequency (RF) radar and electro-optical (EO) 
sensor measurements for joint target tracking is an example of a multi-modal sensing platform. 
Radars can be used to detect and track targets moving with radial velocity as they provide range 
and range-rate measurements; EO sensors can be used to provide azimuth and elevation angle 
information to detect stationary targets. Conventionally, in order to use the RF-EO sensor 
measurements for tracking, matched filtering and thresholding to decide the presence of a target 
is necessary. Using the TBD algorithm, all unthresholded RF-EO sensor measurements need to 
be processed; all range-Doppler plane outputs are required to form the RF measurements and all 
EO sensor correlation plane outputs are required to form the EO measurements. As a result, the 
TBD algorithm keeps all potentially useful information and fuses data across the entire range-
Doppler plane (for the RF) and angle measurement plane (for the EO). It must be noted that this 
process can be computationally intensive if the dimensionality of the measurements is high. 
 
5.2.2.1.   Radar Sensor Measurement Model 
 
For the RF sensor, each range-Doppler resolution cell is assumed to provide a matched filter 
output, and the 2-D range-Doppler plane is divided into BAL   rectangular resolution cells. 
The resolution cell center is denoted by  ll rr , , Ll ,,1 . The RF sensor measurement at the l

th cell center at time step k , assuming that 1kE , is given by, 

 
     lkkl

c
kllkklklk vrr

c

f
rr

c
Ivhz

s ,
)RF(

,
)RF(

,
)RF(

, )( 2
,

2

1
AF)(  x  (194) 

 
where I RF   is the radar return energy intensity, AFs ,   is the ambiguity function (AF) of the 

transmitted signal )(ts , c  is the velocity of the electromagnetic waves in air, lkv ,  is additive 

noise at the l th resolution cell, and fc  is the carrier frequency. The relationship between range 

kr  and range-rate kr  and the target position and velocity in (191) at time step k  can be obtained 

as 
 

2
sr

2
sr )()( yyxxr kkk   

))()((
1

srsr kkkk
k

k yyyxxx
r

r    
(195) 

 
where (xsr , y sr )  is the 2-D (fixed) location coordinates of the sensor. 

The likelihood PDF of the measurement vector  TLkkkk zzz )RF(
,

)RF(
2,

)RF(
1,

)RF( z , is given by 

p(zk
(RF) | x k, Ek 1)  p(zk

(RF) | x k )  or p(zk
(RF) | x k, Ek  0)  p(zk

(RF)), depending on whether the 
target is present or not. When the target is not present, 0kE  and zk,l

(RF)  vk,l . The measurement 

likelihood ratio for detection based on all unthresholded measurements in all cells is given by: 
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RF(zk,l
(RF) |x k )  psN (zk,l

(RF) |x k ) / pN (hk,l
(RF)(x k ))  exp(hk,l

(RF)(x k )(hk,l
(RF)(x k )  2zk,l

(RF)) /RF
2 ) (196)

 

If we assume that the measurement noise at each cell is independent, the likelihood ratio of the 
whole RF measurement vector is 
 
 RF(zk

(RF) |x k, Ek )  l RF(zk,l
(RF) |x k ), Ek 1

1, Ek  0
 (197) 

 
In order to demonstrate the need to keep all unthresholded measurements in the AF plane, a 
linear frequency-modulated (LFM) chirp transmit signal is used, given by 
 
 s(t) 1/(T 2)1/ 4 exp(t 2 /(2T 2))exp( jbt 2) (198) 
 

where 

�

b  is the frequency-modulation (FM) rate and 

�

T  is the standard deviation of the Gaussian 
envelope. The magnitude of its AF is given by  

 
| AFs (τ, ν) | =   dtetsts tj  2* )()(  = 

   22222 /)4/(exp  bTT   
(199) 

 
Note that if delay τk and Doppler νk estimates are obtained at time step k from the AF, then the 
target range kr  and range-rate kr  can be obtained as 

�

rk  ck /2 and 

�

Ý r k  c vk /(2 fc ), respectively. 

Figure 31 and Figure 32 show the LFM AF at 40 dB and 6 dB SNR, respectively. Figure 32 
clearly shows that, at low SNR, thresholding would definitely result in loss of information since 
a single delay-Doppler point cannot be identified that can be associated with the target.  
 
 

 

Figure 31. Ambiguity Function Measurement at 6 dB SNR. 
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Figure 32. Ambiguity Function Measurement at 40 dB SNR. 

 

 

5.2.2.2.   EO Sensor Measurement Model 
 
For the EO sensor, it is similarly assumed that each resolution cell provides a matched filter 
output. Considering only azimuth angle resolution cells, the 1-D (along azimuth) angular AF is 
divided into M  resolution cells, each of length m , where Mm ,,1 . At a given time k , if 

1kE , the EO angle measurement obtained at the m th resolution cell is given by, 

 
 zk,m

(EO)  hk,m
(EO)  uk,m  I EO Ad m  k, 0  uk,m  (200) 

where 

�

I EO  is the EO return energy intensity, 

�

Ad ,   is the angular AF of the transmitted 

signal 

�

d(t) ,  kkk xyarctan  is the angle of the target, and mku ,  is additive noise at the m th 

resolution cell. Depending on the presence of the target, the measurement likelihood PDF is 
p(zk

(EO) | x k, Ek 1)  p(zk
(EO) | x k )  or p(zk

(EO) | x k, Ek  0)  p(zk
(EO)) , where the measurement 

vector is 

�

zk
(EO)  zk,1

(EO) zk,2
(EO) K zk,M

(EO) T . When 0kE  (target not present), that is, 

�

zk,m
(EO)  uk,m . 

Then the likelihood ratio of the whole RF measurement vector is 
 
 

EO(zk
(EO) |x k, Ek )  m exp(hk,m

(EO)(x k )(hk,m
(EO)(x k )  2zk,m

(EO)) /EO
2 ), Ek 1

1, Ek  0 
(201) 

 
 
5.2.2.3.   RF-EO TBD Implementation Using Particle Filtering  
 
The TBD algorithm can be implemented using a PF. The PF will use a measurement equation 
that is based on all unthresholded measurements from the range-Doppler plane and and the angle 
plane. If the measurements from the RF-EO sensors are assumed independent, then the weight 

�

wk
(n )  RF(zk

(RF) |x k, Ek
(n )) EO(zk

(EO) |x k, Ek
(n ))  for the 

�

nth particle depends on the measurement 

likelihood functions in Equations (197) and (201), respectively. 
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5.3. Waveform-Agile Multi-Modal TBD 
 
We developed a waveform optimization approach to allow for adaptive transmit waveform 
selection under low SNR conditions. The approach is integrated into the TBD to select the 
transmit waveform parameters at each time step by minimizing the predicted mean-squared 
estimation error of the state of the target [81, 82, 83]. This work was performed in collaboration 
with the PI, Muralidhar Rangaswamy.In our previous work, waveform agility was achieved 
under the assumption that the measurement noise covariance matrix can be approximated by the 
CRLB covariance matrix. At high SNR values, this assumption is valid because a single range 
and range-rate measurement, obtained by thresholding the AF of the received signal, can provide 
sufficient information to estimate the target state. In particular, the CRLB characterization can be 
obtained directly from the curvature of the AF peak at the origin of the delay-Doppler plane [78]. 
The high SNR assumption used in the waveform design technique does not hold under low SNR 
environments. In such cases, thresholding low SNR targets forces a trade-off between a low PD 
and a high PFA. Thus, low observable targets require unthresholded measurements that are 
below the target detection threshold, to increase their probability of detection. The TBD 
approach uses the unthresholded measurements and it tracks while detecting, as the tracking 
iterations are initiated by a set of possible tracks that depend on all available AF measurements. 
The TBD is computationally feasible as it can be implemented using a particle filter (PF) [75]. 
 
We consider a library of   L  waveforms, s(t;l )  with parameter set L,,1],[  lbT lll .  If the 

waveforms are LFMs, for example, then bl  is the FM rate and Tl  is the standard deviation of the 
Gaussian envelope of the lth LFM chirp. Using the PF-TBD, we compute the predicted 
covariance matrix, assuming the lth LFM chirp was transmitted using  
 
 ˜ P k1, l  ˜ J k1, l  [FMkFT Q]1 1

 (202) 

 
where  

n

T
k

n
kk

n
k

n
kk w ))(( )()()( xxxxM

 , and 
) 
x k is the state estimate obtained using particles 

x k
(n ) at time step k  and wk

(n ) are the corresponding weights. The expected information matrix can 
be approximated as 
 
 ˜ J k1, l  ˜ H k1, l

(n )T

Rk
1 ˜ H k1, l

(n )

n
  (203) 

 
where ˜ H k1, l

(n )  ˜ x k1
(n ) hk,l ( ˜ x k1

(n ) ) and hk,l ( ˜ x k1
(n ) ) depends on the RF or EO sensor as defined in 

Equations (194) and (198), respectively. The operator   computes the gradient with respect to 
each of the target state parameters and ˜ x k1

(n )  Fx k
(n )  is the forward predicted nth particle. 

The waveform agile algorithm selects the waveform with parameter set ˆ  that minimizes the 
weighted predicted MSE at time step (k 1), 
 
 sk1(t; ˆ )  arg min l gTdiag( ˜ P k1, l )  . (204) 

 

Approved for public release; distribution unlimited



   

  87  
 

The weight vector ][ yyxx gggg g T is used to scale the relative importance of the position and 

velocity estimation errors. 
 
5.4.    Statistical Dependent RF-EO Measurements  
 
We proposed the use of the embedded exponential family (EEF) approach [85] to approximate 
the joint PDF of the dependent RF-EO measurements in order to further improve the PF-TBD 
tracker performance [81, 82]. This work was performed in collaboration with Co-PIs Steven Kay 
and Muralidhar Rangaswamy. 

In the previous sections, we have assumed that measurement noise realizations from each range-
Doppler cell and angle resolution cell are independent. However, unless the measurements are 
asynchronous, they should be considered statistical dependent and the unknown measurement 
noise joint PDF needs to be estimated for use in the PF-TBD algorithm. We form the general 
EEF dependence term vectors T

L ][ 21    and T
M ][ 21     by concatenating the 

range-Doppler and angle resolution cells, respectively. Using the EEF approach [85, 86], we 
form the particle filter weights as wk

(n ) 1 when Ek
(n )  0, and when Ek

(n ) 1, we recomputed 

them  as ),|(),|( )(
,

)EO(
EO

)(
,

)RF(
RF

)(  n
kkk

n
kkk

n
k EEw xzxz  . This simplifies to 

 

wk
(n )  exp[ l

l
 ln(psN (zk,l

(RF) | x k
(n )) / pN (zk,l

(RF))  m
m

 ln(psN (zk,m
(EO) | x k

(n )) / pN (zk,m
(EO))  

           G(,)  ln( pN (zk
(RF), zk

(EO)))] 

 

(205)

where  
 G(,)  ( l

2

l
 l ) (z k,l

(RF))2 /(2RF
2 )  (m

2

m
 m ) (z k,m

(EO))2 /(2EO
2 ) (206) 

 
and 
 

pN (zk
(RF), zk

(EO)) l (1/ 2RF
2 ) exp( (zk,l

(RF))2 /(2RF
2 ))m (1/ 2EO

2 ) exp( (zk,m
(EO))2 /(2EO

2 ))  (207)
 
The maximum likelihood estimator of   and   is found by maximizing  

 
 1

RF
2 l

l
 zk.l

(RF) z k.l
(RF) 

1

RF
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2
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 (z k.l

(RF))2  (208) 

 
and  
 1

EO
2 m

m
 zk.m

(EO) z k,m
(EO) 

1

EO
2 m

2

m
 (z k.m

(EO))2 (209) 

 
under the constraint 0 l , m 1, which guarantees that G(,) is finite. Note that z k,l

(RF ) and 

z k,m
(EO)  are the noiseless contributions of the RF-EO measurements given the particle x k

(n ) . 
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5.5. Multiple Target Tracking 
 
We investigated approaches for multiple target tracking for different scenerios, inlcuding multi-
modal sensors with multiple low observable targets and adaptive multiple target tracking when 
the number of targets at each step is unknown.  This work was performed in collaboration with 
the PI, Muralidhar Rangaswamy. 
 
5.5.1.  Rao-Blackwellized Particle Filter for an  Unknown Number of Targets 
 
5.5.1.1.  Joint RF-EO Multi-Target Tracking 
 
We investigated the joint multi-modal operation of the asymmetric character of the fields-of-
view of radar and EO sensors for multi-target tracking applications. We consider pulsed-Doppler 
radar and EO sensors as an attractive sensor combination as the radar provides range and range-
rate measurements to detect targets with radial velocity and the EO sensor provides azimuth and 
elevation angles information to detect stationary targets. 

We formulate the tracking problem using a target state equation model defined to describe point 
targets moving in 3-D, and RF-EO measurement models specified for target-originated and 
clutter measurements. The complete formulation includes probabilistic stochastic process models 
for target states, data associations, and procesess for targets entering or leaving a scene. We solve 
the tracker of an unknown number of targets using the Rao-Blackwellized particle filter (RBPF) 
algorithm [93, 94] based on sequential Monte Carlo (SMC) sampling techniques. The RBPF 
decomposes a filtering problem that would require Monte Carlo sampling into two filtering 
problems: (a) one that can be solved in closed form; and (b) a lower dimensionality one than the 
original that would require Monte Carlo sampling but would not be as computationally intensive 
as the original one. Also, solving some of the equations in closed form instead of using Monte 
Carlo sampling for all the equations can be shown to produce estimators with lower variance. 
Considering a system with state vector kS  and measurement vector k  at time step k, the state 

space model can be given by the density functions )|( 1kk SSp and )|( kk Sp  . If we partition the 

state vector into  TT
k

T
kkS  , the state space model can be re-written as ),,|( 11 kkkkp   , 

),|( 11  kkkp  , and ),|( kkkp  . If ),,|( 11 kkkkp   and ),|( kkkp   can be calculated 

in closed form, we can apply Monte Carlo sampling only to k , with k  independent of 1k so 

that )|(),|( 111   kkkkk pp  . In this way, a decrease in the state dimensionality and use of 

the RBPF results in a largely reduced number of particles, improving the effectiveness of the 
Monte Carlo sampling and thus leading to an efficient implementation. For the joint RF-EO 
multi-target tracking, the partitions of  kS  are given by the target position and velocity k  and 

by the various association events k . Here,  we assume that the transition model for the 

association events )|( 1kkp   is independent of 1k . 

 
5.5.1.2.   Waveform Agile Multi-Modal Design 
 
We proposed a joint multi-modal sensing mode based on using dynamic agility selection to 
optimize the tracking performance of multiple maneuvering targets. The proposed method jointly 
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designs waveforms for radar sensing and resolution switching modes for EO sensing, when both 
sensor measurements experience high false alarm rates. By independently and adaptively 
configuring the radar waveform parameters and EO resolution parameters, we show that it is 
possible to increase the joint sensing performance and fully exploit multi-modality. 

The approach is based on deriving the posterior CRLB (PCRLB) for single and multiple target 
tracking using the joint RF-EO sensor system. If kx


 is an unbiased estimate of the target state kx  

obtained using RF-EO measurements, then the covariance matrix of kx


 has the lower bound 
1]))([(  k

T
kkkkk JxxxxEP


. The Fisher information matrix kJ  can be computed recursively 

as FQFQFJQFJQJ T
kk

T
kk

TEORF
kkk )()( 1111/

1


  , where F  and kQ  are the target state 

transition and process noise covariance matrices, respectively, and EORF
kJ / depends on the 

probabilities of detection and false alarm, validation gate volume, and measurement covariances 
for the RF and EO sensors. In general, higher PD or lower PFA yield higher information and 
consequently better tracking performance.  
 
A direct optimization of the error covariance matrix can provide guidelines for waveform design 
for the RF-EO sensing system to improve tracking performance. However, due to the 
computational complexity involved, inferences on a waveform design scheme were instead 
derived from the PCRLB. Specifically, at time step k, we obtain the target state estimate kx


 

using the RBPF and then use this estimate to predict the possible states at the next time step and 
the corresponding distributions using target state models. The predicted target states are then 
used with the PCRLB to select the sensor parameters. We demonstrated the performance of the 
proposed adaptive tracking system using numerical simulations. 

5.5.2.   Tracking Low Observable Targets Using PF-TBD  
 
Tracking a time-varying number of targets under the severe conditions of low SNR and high 
clutter is still considered a difficult problem in radar. We generalized the recursive TBD 
algorithm to track multiple low observable targets by estimating the joint posterior PDF of their 
state vector while keeping track of targets entering and leaving the FOV at each time step. The 
different modes in the multiple target case correspond to the different number of target 
combinations that may be present in the scene at time steps 1k  and k . The state vectors 
corresponding to all the targets in the different modes are then integrated to derive the overall 
target estimate. Thus, the proposed multiple-mode multiple-target PF-TBD algorithm is based on 
estimating the posterior probability density of the target states under different modes in order to 
consider all possible target presence combinations at each time step. 
 
5.5.2.1.   Multiple Target Model for PF-TBD 
 
Assuming a maximum possible number of L  targets, the combined target state vector is given by 

 TT
Lk

T
k

T
kk ,2,1, xxxx  , with the l th target state vector  Tlklklklklklk Iyyxx ,,,,,, x , 

Ll ,,1 . The 2-D Cartesian coordinates of the position and velocity of the l th moving target 

at time step k  are given by  lklk yx ,, ,  and  lklk yx ,, ,  , respectively, and lkI ,  is the measurement 
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intensity level of the l th target in the associated position. The multiple target state model for all 
L  targets can be written as 
 
 

kkk vx

F

F

F

x 















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0

0







 (210) 

 

where  TT
Lk

T
k

T
kk ,2,1, vvvv   and  F  is the state transition matrix in Equation (191). Note 

that this formulation does not require that all L  targets are present at the same time. This enables 
us to detect a target entering the scene (target birth) and a target leaving the scene (target death). 
Thus, at any time, many different combinations of target presence, or different modes, are 
possible. In general, the total number of modes is given by 
 
 

 
 


L

l lLl

L
M

0 !!

!
 (211) 

 
5.5.2.2.   State Transition Matrix for PF-TBD 
 
By tracking the state of the mode at each time step, we are inherently estimating when a target is 
entering or leaving the radar scene. The mode transition is modeled as an M -state first order 
Markov chain kr  and takes values from the set  1,,1,0 M . Mode 0kr  implies that no 

targets are present in the scene; mode 1 Mrk  implies that all targets are present in the scene. 

An MM   state transition matrix is constructed based on a priori information about each mode 
transition, assuming that both BP , the probability of a new target entering the scene, and DP , the 
probability of a target leaving the scene, are known. The transition matrix for 2L  is given as  
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with 12
1,1  BB PP , 12

4,4  DD PP , and BDBD PPPP 213,32,2  . We assume 

that the initial mode probability,  mr 0Pr , 1,,0  Mm  , is known a priori. 

 
5.5.2.3.   Measurement Model for PF-TBD 
 
For this problem, we assume that the measurements are obtained from video cameras for 
tracking moving objects. Each measurement frame is assumed to consist of BA  cells. The 
resolution dimension and the center location of the  ba, th cell, Aa ,,2,1  , Bb ,,2,1  , are 

given by ba    and ba ba   , respectively. If no targets are present, the measurements in all 
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the cells are just noise. If a target is present, then the measurements in the cells that are in the 
vicinity of the target’s current position consist of both signal and noise. We consider a point 
target and a sensor point spread function that can be approximated by a 2-D Gaussian density. 
Specifically, considering the l th target, Ll ,,2,1  , the mode target combination can be 

formulated as qM lrk
, , 1,,1,0  Mrk  , where the binary valued q 1 if the l th target is 

present in mode kr ; otherwise, q  0. Based on this, the measurement equation is given by, 
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klk
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k
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z k

x
 (213) 

where     


 e

I
xh lkba

lk
ba

k 2

,
,

,

2


, with      22
,

2
,5.0  lkblka ybxa   and   is a 

known parameter that controls the video camera blurring. The independent and identically 
distributed measurement noise samples ba

kw ,  are assumed to be zero-mean Gaussian with 

variance kr . All the measurements up to time k  are T
kk ][ 21 zzzZ   and the overall 

measurement vector is             TBA
k

A
k

B
kk

B
kkk zzzzzz ][ ,1,,21,2,11,1 z . 

 
5.5.2.4.   Multiple-Mode Multiple-Target TBD Algorithm 
 
The multiple-mode multiple-target TBD algorithm can be formulated as a nonlinear jump 
Markov process whose kinematic target state vector must take into account the time-varying 
number of targets at each time step. Given the state and measurement models and the posterior 
probability density  111 |,  kkk rp Zx  at time 1k , the task of the multiple-mode multiple-target 

TBD is to estimate the posterior probability density  kkp Zx |  at time k . This is a multiple-

model problem in which the posterior probability density will differ based on the different modes 
of the target condition. For ease of notation, we define mkr ,  to represent mrk  , which means that 

the state mode at time k  is m . Then, the posterior probability density can be written as, 

    





1

0
, |,|

M

m
kmkkkk rpp ZxZx  (214) 

where the m th joint posterior probability density is  
 
 p xk,rk,m | Zk   p xk | rk,m,Zk Pr rk,m | Zk  (215) 
 
The algorithm steps can be summarized as follows. 
 Initialize PDF  1,00 ,| kmrp Zx  and mode probability  0,0 |Pr Zr m , 1,,1  Mm   

 For 1k  through K , repeat the following steps: 
 Predict the state PDF  1, | kkmlp Zx , conditioned on mode l  at time 1k  and mode m  

at time k  for 1,,1,0  Ml   and 1,,1  Mm   

 Compute the likelihood function  kkmlL xz |, , conditioned on modes l  and m  

 Update the posterior state PDF  kkmlp Zx |, , conditioned on modes l  and m  
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 Compute the mixing probabilities as Pr rk1,l | rk,m,Z k   pl,m zk | Z k1 l,mPk1,l

p zk | rk,m ,Z k1 Pk1,m

. 

 Using the mixing probabilities, compute the posterior mode probabilities  kmk Zr |Pr ,  

 Compute the posterior PDF      kmklk

M

l
kkmlkmkk rrprp ZZxZx ,|Pr|,| ,,1

1

0
,, 




  

conditioned on a mode. 
 

5.5.3.  Agile Tracking Using Probability Hypothesis Density Filter  
 
We developed a waveform-agile method for tracking multiple targets as well as estimating the 
number of targets at each time step using the probability hypothesis density filter (PHDF).  The 
selection process myopically chooses the transmit waveform for each target by minimizing the 
predicted MSE across a pre-computed waveform library [92]. This work was performed in 
collaboration with the PI, Muralidhar Rangaswamy. 
 
5.5.3.1.   Mutliple Target Tracking Model Formulation  
 
We consider a multiple target tracking system that uses  J  sensors to track Lk  targets, where Lk  
may be known or unknown. The ith sensor transmits a single Gaussian windowed LFM chirp at 

time step k , k
(i)˜ s (t)  2 k Re{ k

(i)s t; k
(i)  j2 cf te }, Ji ,1 , where cf  is the carrier frequency, k  

is the signal energy, and   2)(2)(2 2)λ/(5.04/12)()( ))λ(();( tbjti
k

i
k

i
k

i
k

i
k eets

   is the transmitted signal. The 

signal is characterized by the parameters Ti
k

i
k

i
k b ]λ[ )()()(  , where )(λ i

k  depends on the 

waveform duration and )(i
kb  is the signal’s FM rate. If we assume that each target generates only 

one observation at each time step, and that targets generate observations independently of one 
another, then the  mth (noiseless) received waveform is 
 
 })(~Re{)(

)(2)(
,

)()(
,

)(
, tfji

mkk
i

m
i
mk

i
mkcetsAtr

  , kMm ,1  (216) 

 
where )(i

mA , )(
,
i
mk , and )(

,
i
mk  are the amplitude fading, time-delay and Doppler-shift changes, 

respectively, on the transmitted signal. Assuming that the observation originated from a target, 
we can use the observed time-delay and Doppler shift values, and relationships cr i

mk
i
mk /2 )(

,
)(

, 

and crf i
mkc

i
mk /2 )(

,
)(

,  , where c is the velocity of the waveform in air, to obtain range )(
,
i
mkr  and 

range-rate )(
,
i
mkr  information from the ith transmitter to that target at time k. The state vector, 

T
lklklklklk yyxx ][ ,,,,, x , is in terms of the 2-D Cartesian coordinates of the location ),( ,, lklk yx  and 

velocity ),( ,, lklk yx   of the lth target, kLl ,1 , at time step k . The state equation follows the 

constant velocity model as in Equation (191). 
 
The m th measurement Ti

mk
i
mk

i
mk

i
k,m rr ][ )(

,
)(

,
)(

,
)( z  h(i)(x k,l )  vk

(i) at the ith sensor at time k  

provides range, range-rate and bearing angle information. Note that the m th measurement may 
not necessarily be from the lth target; it may correspond to a false alarm measurement due to 
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clutter. Ignoring the noise term, )()()(
k,l

ii
k,m h xz   depeds on 2/12

sr,
2

sr,
)( ])()[( (i)

lk
(i)

lk
i

k,m yyxxr  , 
)(

,sr,,sr,
)( /])()[( i

k,mlk
(i)

lklk
(i)

lk
i

k,m ryyyxxxr    and )/arctan( ,,
)(

, lklk
i
mk xy , where ),( )(

sr
)(

sr
ii yx  is the 2-

D (fixed) location coordinates of the ith sensor. When the m th observation originates from the l
th target, or m  l , then the state of the lth target can be estimated. The measurement noise 
process )(i

kv  is assumed zero-mean Gaussian with covariance )( )(i
kN   and depends on the ith 

transmitted waveform parameters Ti
k

i
k

i
k b ]λ[ )()()(  . Assuming high SNR, )( )(

AF
i

kN   in the 

block diagonal measurement noise covariance )),(diag()( )(
AF

)(
 NNN i

k
i

k   can be 

approximated by the CRLB on the variance of the range and range-rate estimators, following 
[78]. The CRLB can be computed using the narrowband AF of the transmitted waveform. N

does not depend on the waveform parameters; it is set based on the radar scene. 
 
5.5.3.2.  PHDF and Multiple Target Tracking  
 
The probability hypothesis density filter (PHDF) dynamically estimates the number of targets 
and their parameters at each time step by modeling them as random finite sets (RFS) [91]. Using 
RFS, we define the multiple target state RFS as },,{ 1 kk,Lk,k xxX  , where k,lx  is the state 

vector of the lth target, the measurement RFS up to time step k as },,{ 11 k:k ZZZ  , and the 

multiple target measurement RFS as },,,,,,,,,{ )()(
1

)2()2(
1

)1()1(
1

i
k,M

i
k,k,Mk,k,Mk,k kkk

zzzzzzZ  , where 
)(i

k,mz  is the mth measurement and kM  is the total number of measurements. If we consider any 

state vector kk Xx  , it can be shown that by integrating the probability hypothesis density or 

intensity function )( 1:kk Zx  over a given region will provide the expected number of targets in 

that region; the locations of the density peaks will provide estimates of the target states [91]. The 
PHDF assumes that the predicted multiple target posterior PDF )( 11 :kkp Zx  can be characterized 

by the multiple target RFS intensity function )( 11 :kk Zx . Thus, given the posterior intensity 

)( 111  :kk Zx  at time step (k-1), the predicted intensity )( 11 :kk Zx  can be obtained as  

 
 

111111
spn

1111
new

11 )(])()()([Pr)()( k-:kk:kkk-kk-kk:kk:kk dp xZxZxxxxZxZx     (217)

 
where new

kx are targets that appear at time step k, spn
kx  are targets spawning from targets from the 

previous time (k-1), and )(Pr 11 k-kk x  is the probability that a target that was present at time (k-1) 

will still be present at time step k. The posterior intensity is given by 
 


 







:kk k:kkkkkk

:kkkkkk
:kkkk:kk

dp
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)()()(Pr
)())(Pr-(1)(

11
detclt

11
det

11
det

1
ZZ xZxxZxZ

ZxxZx
ZxxZx




  (218)

 
where )(Prdet

kk x  is the probability of detecting a target at time step k. We assume that the 

measurements can include possible false alarms,  cltZ , with clutter intensity )( cltZ . The clutter 
is assumed independent from the target measurements. 
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The PHDF prediction and update equations in Equations (217) and (218), respectively, involve 
multiple integrals that are not computationally tractable. Following a particle filter (PF) 
implementation (PF-PHDF) [95] instead, the intensity function )( 111  :kk Zx  at time (k-1) is 

approximated using particles xk1
(n ) and their corresponding weights wk1

(n ) , Nn ,1 , as 
 
 

(x k1 Z1:k1)  wk1
(n )(x k1  xk1

(n ) )
n1

N

  (219) 

 
where   N  is the number of particles and )(  is the Dirac delta function. If we substitute 
Equation (219) into (217), then 
 
 

(xk Z1:k1) (x k
new Z1:k ) wk1

(n ) [Prk k1(x k1
(n ) )p(xk xk1

(n ) )(x k
spn Z1:k1)]

n1

N

  (220) 

 
A particle approximation of )( 11 :kk Zx  is obtained using importance sampling on each term in 

Equation (220). In particular, x k
(n )  Fxk1

(n )  wk1, Nn ,1 , and x k
(n ) , NNn ,1  are drawn 

uniformly from the state space that the targets will occupy. Then, (220) can be approximated by  
 
 

(x k Z1:k1)  wk k1
(n ) (x k  x k

(n ))
n1

N N

  (221) 

 
where N  is the number of particles for the new targets at time k, wk k1

(n )  Prk k1(x k1
(n ) )wk1

(n )  for 

  n 1,K N and wk k1
(n ) 1/N  for )(,1 NNNn   . In our simulations, we assumed that the 

transitional prior intensity 0)( 1
new :kk Zx  and )( 11

spn
:kk Zx  is a uniform distribution with the 

bound of the state space set a priori. We can thus obtain a particle approximation of the posterior 
intensity function )( 1:kk Zx  as 

 
 

(x k Z1:k )  wk
(n )(x k  x k

(n ))
n1

N N

  (222) 

 
where  
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(n )  1 Prk
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(n )) 
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(n )) p(Z k x k
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(Z k
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  

(223) 
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The particles and their weights are divided into kL  groups using a clustering algorithm such as 

k-means. The number of clusters kL  is either assumed known or estimated directly from 

)( 1:kk Zx . Denoting the particles and weights from the lth target, kLl ,1 by x k,l
(n ), and wk,l

(n ), 

respectively, then the lth target state is estimated as )(
,

)(
,,

ˆ 
lkl lklkk w xx 


l

; its covariance is given 

by T
lkklklkklkl lklkk w )ˆ)(ˆ( ,

)(
,,

)(
,

)(
,, xxxxP   



l
. 

 
5.5.3.3.  Waveform Optimization  
 
The optimal transmit waveform is the one that minimizes the target tracking error, which is 
approximated by the predicted MSE. For kk Xx   and estimated by with kx̂  given :k1Z , this 

error is given by  )ˆ()ˆ()(
1:1, kk

T
kkk kkk

EJ xxxxZZx 


 , where  is a weighting matrix that 

sets the relative importance of position and velocity errors. Although the minimization of )( kJ   

can be performed using algorithms such as the gradient descent, these algorithms are  
computationally intensive to be used effectively. Here, we use the unscented transform to 
approximate  )( kJ  , where the first and second moments of the underlying distribution are 

estimated using a small set of deterministically chosen particles or sigma points . 
 
From the PF-PHDF, the state estimate of the lth target at time step (k-1) is lkk ,11

ˆ x ; its 

corresponding error covariance matrix is lkk ,11 P . The state equation can then be used to 

propagate the target state and covariance matrix forward in time using lkklkk ,11,1
ˆˆ   xFx  and 

QFFPP  
T

lkklkk ,11,1 . Then lkk ,P  is obtained using the unscented transform and lkk ,1P , using 

using a set of 12 S  sigma points ljk ,,χ  and corresponding weights ljk ,,W , )12(,1  Sj  . 

Specifically, the observation state, )(
,11

)(
,

i
l:k

i
lk zz , of the ith sensor is approximated into the 

measurement space using )( ,,
)(

ljk
i(i)

k,j,l h χZ , )12(,1  Sj  . Note that, while there is a set of 

state sigma points ljk ,,χ  for the lth target, the measurement sigma points (i)
k,j,lZ  are calculated for 

each sensor that observes the lth target. If there are kL  sets of state sigma points, there will be 

JLk   sets of measurement sigma points. The unscented transform uses the sigma points to 

update the covariance matrices  
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with 
  


S

j ljkk,j,llk

2

0 ,,, χχ W  (226) 

Approved for public release; distribution unlimited



   

  96  
 

and 
  


S

j

(i)
k,j,l

(i)
k,l

2

0
Zlj,k,WZ  (227) 

 
These covariances, together with lkk ,1P  are then used to update the posterior covariance as a 

function of the state as upd
,1

)()(
, )( kklkk

i
k

i
lkk PPP    and Ti

XZ
i

k
i

ZZ
i

XZkk N )()]([ )(1)()()(upd PPPP   . Note 

that these equations need to be applied for each sensor in order to configure the transmit 
waveform of each sensor. They are first applied with 1i . Then, for Ji ,2 , they are  

repeated, but with lkk ,1P  replaced by )( )1()1(
,

 i
k

i
lkk P . The final predicted covariance is )( )()(

,
J

k
J

lkk P . 

After updating the covariances of all sensors, and with TJ
kkk ][ )()1(   , the predicted 

MSE for a single target can be approximated as ))(trace()( k,  lkkkJ P . The waveform 

selection algorithm chooses the set of transmit waveforms for J  sensors that minimize the 

predicted MSE, that is, })({minargˆ
1






k

k

L

l
klk J . A library of waveforms, with varying 

parameters   ranging over ]λ,λ[ maxmin and ]BW,BW[ maxmin , can be determined prior to tracking 

to fit the characteristics of a radar system. 
 
 
5.6. Simulation and Experimental Results  
 
5.6.1.  Waveform-Agile Multi-Modal TBD 
 
We consider a single target moving in a random trajectory, starting at (−13, −39.98) ft with 
initial velocity of (1.1891, 2.3266) ft/s at 8 dB SNR.  The PF-TBD algorithm used 1,500 
particles and 20 iterations were used. A dictionary of 25 LFM chirp signals was used, formed by 
varying  range resolution from 0.5 to 2 ft and range-rate resolution from  0.5 to 2 ft/s; the 
resulting LFM parameters are provided in Table 3 
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Table 3. Parameters of LFM Chirp Library 
 

 Range-Rate Resolution (ft/s) 
 
 

0.5 0.707 1 1.414 2 

0.5 ft range resolution      
Duration (ms) 0.164 0.116 0.082 0.058 0.041 
FM rate (1012 Hz2) 6.283 8.886 12.566 17.772 25.133 
0.707 ft range resolution      
Duration (ms) 0.164 0.116 0.082 0.058 0.041 
FM rate (1012 Hz2) 4.443 6.283 8.886 12.566 12.772 
1 ft range resolution      
Duration (ms) 0.164 0.116 0.082 0.058 0.041 
FM rate (1012 Hz2) 3.142 4.443 6.283 8.886 12.566 
1.414 ft range resolution      
Duration (ms) 0.164 0.116 0.082 0.058 0.041 
FM rate (1012 Hz2) 2.221 3.142 4.443 6.283 8.886 
2 ft range resolution      
Duration (ms) 0.164 0.116 0.082 0.058 0.041 
FM rate (1012 Hz2) 1.571 2.221 3/142 4.443 6.283 

 
 
MSE comparison plots are shown in Figure 33, Figure 34, and Figure 35 using the PF-TBD 
algorithm with waveform selection and fixed waveforms for different weight vectors 

T
yyxx gggg ][ g . As it can be seen, the tracking performance improves with waveform design. 

 

 
Figure 33. MSE Comparison of PF-TBD Estimation Position Error, Weight = (1,1,0,0) 

Fixed Waveforms and Waveform Design (WD) for a Random Trajectory 
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Figure 34. MSE Comparison of PF-TBD Estimation Position Error, Weight = (1,1,1,1) 

Fixed Waveforms and Waveform Design (WD) for a Random Trajectory 

 

 
Figure 35. MSE Comparison of PF-TBD Estimation Position Error, Weight = (0,0,1,1) 

Fixed Waveforms and Waveform Design (WD) for a Random Trajectory 

 
 
5.6.2.  Dependent Measurements 
 
We compared the tracking performance of the PF-TBD algorithm integrated with the EEF 
approach with the performance of the PF-TBD assuming that the RF-EO measurements  are 
independent.  The same random trajectory and running parameters were used, similar to Section 
5.6.1. The simulation results in Figure 36 and Figure 37 demonstrate that the EEF approach 
results in a lower MSE than when the measurements are assumed independent.  
 

Approved for public release; distribution unlimited



   

  99  
 

 
Figure 36. True and Estimated Trajectory Using PF-TBD 

 Dependent (EEF) and Independent (non-EEF) RF-EO measurements 

 

 
Figure 37. Averaged Position Error Using PF-TBD 

 EEF and Independent Measurements (non-EEF) 

 
 
5.6.3.   Multi-Modal Sensing Platform and Experimental Results  
 
The performance improvement proposed by multi-modal sensing with waveform agility was 
tested using our team’s experimental platform. The platform, designed by Co-PI Ram Narayanan 
at Pennsylvania State University, consists of a Tektronix AWG710 waveform generator, Agilent 
MSO8104A mixed signal oscilloscope and Sony cybershot DSC-W30 6 Mpixels. The arbitrary 
waveform generator (AWG) enables generation of LFM chirp waveforms of different 
bandwidths. The AWG operates at a maximum rate of 4 GSa/s, making it possible to generate 
waveforms of frequencies up to 2 GHz. The test-bed platform also includes amplifiers, 
transmitting and receiving antennas, and a high-speed oscilloscope for recording the received 
signal. The equipment is shown in Figure 38. The power amplifier has a gain of around 30 dB 
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and the maximum power output is 28 dBm. The low noise amplifier has a typical gain of 25 dB 
and noise level of  1.5 dB at 1 GHz. The mixer has a conversion loss of 6.5 dB at operating 
conditions. The frequency spectrum of the transmitted signal lies within the 1,000 to 1,640 MHz 
band. Frequency translation is performed to down convert the received signal from the 1,000-
1,640 MHz band to the 300-940 MHz range. The oscilloscope samples and records the return 
signal at 4 GSa/s. The return is processed by software which decides whether further processing 
is required and what bandwidth waveform must be used at the next time step, if any. A 
workstation with a GPIB controller enables the software to control the AWG and the 
oscilloscope. Hence, the radar is capable of automatically make decisions about additional 
processing and required  bandwidth. The radar system parameters are shown in Table 4. 
Tektronix ArbExpress is used to generate rectangular envelope LFM chirp signals with 1 GHz 
carrier frequency. The parameters of the library of the LFM signals we used in the experiments is 
summarized in Table 5. 
 
 
 
 
 
 

 

 
 
 

Figure 38. RF-EO Experimental Sensing Platform at Pennsylvania State University 
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Table 4. Platform Radar System Parameters 

Parameter Value 
Radar waveform LFM pulse 
Radar bandwidth 40-640 MHz

Pulse width 16 µs 
Transmit power ~ 0.5 W 

Maximum radar range ~ 25 m 
 
 

Table 5. Parameters of Waveform Library 
Amplitude, V 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Duration,  ms 16 16 16 16 16 16 16 16 16 16 
FM rate 1012 Hz2 3.75 7.5 11.25 15 18.75 22.5 26.25 30 33.75 37.5 
Range Res.  ft 8.587 4.294 2.862 2.147 1.717 1.431 1.227 1.073 0.954 0.859 

 
 
The left and right view of the platform are shown in Figure 39 and Figure 40, respectively. The 
vertical view of the scene is captured by a camera at each time step to obtain angle information. 
The field is a trapezoid, as shown in Figure 41 (vertical view) and Figure 42 (horizontal view). 
Also shown are the locations of the platform and the calibrations; these calibrations are used to 
measure angle information from pictures. 
 

 
 

Figure 39. Experiment Field View: Left View of the Platform 
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Figure 40. Experiment Field View: Right View of the Platform 

 
Using this experimental platform, we demonstrated the advantage of waveform agility in multi-
modal tracking using a 2x2 ft trihedral corner reflector as the target. Using the random trajectory 
used in Sections 5.6.1 and 5.6.2, we compared the estimation position error of the PF-TBD 
algorithm and the PF-TBD integrated with EEF. The average position error is defined as the 
mean of position error at 10 time steps, which evaluates the overall tracking ability. The results 
summarized in Table 6 showed that integrating the EEF into the PF-TBD resulted in reducing the 
the estimation error. 
 

 
 

Figure 41. Experiment Field Layout: Vertical View. 
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Figure 42. Experimental Field Layout: Horizontal view 

(See calibration coordinates in Figure 41) 
 
 

Table 6. Averaged Estimation Position Error  
 

FM rate 
1012 Hz2 

Random Trajectory 
MSE 

using EEF 
MSE without 

using EEF 
3.75  1.28 1.43 
7.5 1.13 1.87 
11.25 1.02 1.99 
15 2.29 2.61 
18.75 1.78 1.82 
22.5 2.73 2.57 
26.25 2.01 2.96 
30 3.27 3.36 
33.75 3.68 4.22 
37.5 3.29 3.54 

 
 
We also demonstrated the advantage of waveform design using the random trajectory and 
allowing different waveforms to be transmitted at different times. Figure 43 shows the true and 
estimated random trajectory, and Figure 44 shows that the platform adaptively configures the 
sensor resolutions to minimize estimation position error. The actual estimation error 
performance, compared to fixed range resolution waveforms, is shown in Figure 45.  
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Figure 43. True and Estimated Random Trajectory from Experimental Setup. 

 
 

 
Figure 44. Optimal Sensor Configuration. 
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Figure 45. Position MSE from Experimental Results Demonstrating Waveform Design for 

PF-TBD 

 
5.6.4.   Multi-Modal RF-EO Sensing of Multiple Targets 
 
We demonstrated the joint RF-EO multiple target tracking scenario in Figure 46 using 4 RF-EO 
sensors to alternatively provide measurements to the data processing center, i.e., the RF sensors 
provided range and range-rate measurements at odd times whereas the EO sensors provided 
angle measurements at even times. Targets 1, 2, 3, and 4 enter the scene at time steps 1, 50, 100, 
and 150, respectively. The targets are tracked using range measurements (dotted arcs), range-rate 
measurements (lines), and angle measurements (dotted lines). As we can see, the trajectory 
begins with random selected positions (denoted by circles) and then follow the true trajectory. 
 

 
Figure 46. Joint RF-EO Multi-Target Tracking, 4 Separate Targets in 2-D space 

Target 1 at (559.7,-630.9) m (green), Target 2 at (114.0,240.0) m (blue), Target 3 at (383.8,-
326.7) m (black), and Target 4 at (-419.7,-11.2) m (yellow). 
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Figure 47 shows the tracking MSE of the position estimate of the first target using different 
numbers of RF-EO sensors, with and without waveform agility. As we can see, the best 
performance is obtained when 4 RF-EO sensors are used with waveform selection and adaptive 
control. Thus, waveform design improves tracking performance, and it substantially improves it 
over the performance of a single RF-EO sensor tracking case.  
 
 

 
 

Figure 47. MSE (Target 1) for MTT with an Increasing Number of RF-EO Sensors 

 
 
5.6.5.   Multiple Target TBD 
 
We implemented the multiple target PF-TBD algorithm to track three low SNR targets in 2-D. 
We assumed constant velocity target motion and additive Gaussian process noise models. The 
state model 5 × 5 F matrix has zero elements except it is unity along the diagonal, and F34 =F12 = 
δt, where δt is the duration between time steps. The 5 × 5 covariance matrix Q for the modeling 
error process vk is zero except for elements Q11 =Q33 = q1 δt4/4, Q12 =Q21 = q1 δt3/2, Q43 =Q34 = 
q1 δt3/2, Q22 =Q44 = q1 δt2, Q55 = q2 δt, where q1 and q2 are modeling error process parameters 
for the target motion and intensity, respectively. For the three targets, the measurements were 
generated such that the first target enters during frame 4 and leaves during frame 20; the second 
target enters during frame 10 and leaves during frame 26; and the third target enters during frame 
16 and leaves during frame 32. The initial positions and velocities for each of the targets were 
(7.2, 7.2) m and (0.75, 0.55) m/s, (4.2, 16.2) m and (0.75,-0.75) m/s, and (9, 20) m and (0.05, -
0.85) m/s, respectively.  
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Figure 48 shows frame 20 with and without 9 dB peak SNR noise. 
 

 
 

Figure 48. Measurement with Three Targets 

Signal Only (left) and 9 dB Peak SNR Noisy Signal (right). 
 
 
The process noise parameters are set to q1 = 0.001 and q2 = 0.01, and the measurement noise 
variance is 1. The probabilities of entering and leaving the scene are chosen as PB = PD = 0.05. 
The parameters used in generating new particles are a measurement threshold of γ = 2.25, target 
velocity uniform range values from -1 to 1 m/s, and target intensity range values from 10 to 30. 
The expected peak SNR ranged from 0 to 20 dB.  
 
Figure 49 shows the estimated mode probability at different frames for 9 dB peak SNR. The 
plots at the bottom of the figure (around 

�

y  0.2 m) show the true state of the mode. As it can be 
seen, the proposed algorithm closely follows the true mode transition. Figure 50 shows the 
probability of target presence for all three targets. The bottom part of the figure shows the true 
target presence at different frames. Figure 51 shows the true and estimated target position; it can 
be seen that the proposed algorithm can closely track all three targets at low SNR. 
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Figure 49. Mode Probability for 3 Targets at 9 dB Peak SNR 

 
 

 
 

Figure 50. Target Presence Probability for 3 Targets at 9 dB Peak SNR 
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Figure 51. True and Estimated Target Trajectories of 3 Targets at 9 dB Peak SNR. 

 
 
5.6.6.   PHDF and Multiple Target Tracking 
 
In a two-radar tracking scenario, we used the PF-PHDF to track two targets at each time step.  
The radars are located at (0, 0) km and (1, 1) km, while the target tracks are plotted in Figure 52.  
In the first 8 s of the tracking scenario, Target 1 is observed alone, then both targets are present 
for the next 13 s, and then Target 2 is observed alone for the last 8 s of the tracking scenario. 
 
 

 
 
 
 

Figure 52. Target Trajectories for Simulated Target 1 and Target 2 
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At each time step, the transmit waveforms for each radar are chosen based on the minimum 
predicted MSE. Figure 53 and Figure 54 show the MSE from transmitting fixed waveforms, as 
well as from transmitting dynamically selected waveforms; for dynamic selection, the MSE is 
provided for the case of both radars transmitting the same waveform as well as each radar 
transmitting a different waveform. In the computed MSE, position errors are given five times the 
weighting of velocity errors so that the algorithm chooses waveforms with good range resolution. 
 
Dynamically selecting the transmitted waveforms reduced the target tracking error over a range 
of fixed waveforms. Although not true in general, for this specific tracking geometry there is 
little benefit to transmitting different waveforms because the optimal waveforms are 
approximately the same. In scenarios with more complex radar and target geometries, as well as 
more complex target tracks, this will not be the case.  Additionally, the tracking error for Targets 
1 and 2 appear to be independent.  While this is not true in general, it is in this scenario because 
both targets are located in the same area relative to the radars, and the waveform choices are 
optimal waveform choices are approximately the same for each target. 
 
 

 
 

Figure 53. Computed MSE for Target 1 for Same and Different Transmit Waveforms 

WA1 is for the MSE when both radars transmit the same waveform; WA2 for the MSE 
when each radar transmit a different waveform 
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Figure 54. Computed MSE for Target 2 
 
 
5.7. Conclusions 
 
The track-before-detect algorithm, implemented sequentially using particle filtering (PF-TBD), 
was applied to the asymmetric RF-EO multi-modal platform to track low observable targets.  
The algorithm was integrated with waveform agile selection to deal with targets with different 
energy returns and to reduce information loss due to low SNR or when dependent measurements 
from different sensors are not appropriately processed. The PF-TBD was also integrated with the 
embedded exponential family approach in order to take into consideration the statistical 
dependence between RF and EO measurements when used at the same time to observe the same 
scene. The improvements in tracking performance were demonstrated not only with simulations 
but also using an experimental platform, consisting of both RF and ED sensors. 
 
The PF-TBD was extended to estimating the parameters of multiple targets in low SNR. We first 
considered joint multi-modal sensing based on using dynamic agility selection to optimize the 
tracking performance of multiple maneuvering targets. The algorithm used waveform design for 
RF sensing and resolution switching modes for EO sensing when both sensor measurements 
experienced high false alarm rates. It also made use of the Rao-Blackwellized particle filter  to 
track an unknown number of targets within the adaptive configuration framework. Secondly, we 
considered a new algorithm that estimates the joint posterior probability density of all the target 
trajectories while keeping track of targets entering and leaving the noisy radar scene under 
observation by considering the different scenarios as multiple modes. Also for multiple target 
tracking, we also considered the probability hypothesis density filter, implemented using particle 
filtering and integrated with waveform agility. The selection process myopically chooses the 
transmit waveform for each target by minimizing the predicted MSE across a pre-computed 
waveform library. 
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6. Radar Test-Bed Development 
 
6.1. Methods, Assumptions, and Procedures 
 
Increasingly complex target scenarios call for sophisticated techniques such as waveform and 
sensing diversity for resolving individual targets or target scattering centers for target 
identification and recognition. Waveform design is therefore an essential ingredient of modern 
radar systems [96]. With the available electromagnetic (EM) spectrum becoming increasingly 
scarce, a crucial requirement is one of multimodal sensor operation with fully adaptive waveform 
capability [97], [98].  
 
Multifunction radio frequency (RF) systems have been studied for a long time [99]–[101]. A 
scalable multifunction RF system allows the RF functionality (radar, electronic warfare and 
communications) to be easily extended and the RF performance to be scaled to the requirements 
of different missions and platforms. Such a system, explained in [99], has a design that is 
functionally partitioned into scalable, reusable modules consisting of isolated self-contained 
functional elements. The architecture consists of multifunction apertures that are active phased 
array antennas that can be changed in size, shifted in RF and switched in polarization. 
Technology advances such as analog-to-digital conversion speed, reducing hardware size have 
allowed an increasing degree of digitization, and hence modularity and flexibility. The Advanced 
Multifunction RF System (AMRFS) initiated by the Office of Naval Research was a 
demonstration of the concept of common broadband apertures being used to simultaneously 
perform a large number of RF functions [100]. The underlying concept of AMRFS is to divide 
the frequency band into an optimal number of segments based on cost and functionality and then 
utilize separate, electronically scanned, solid state transmit and receive apertures. The test-bed 
consists of four low band and high band transmit and receive array apertures. Fundamental to the 
selected AMRFS architecture is the physical separation of receive and transmit and the 
partitioning of the 1–18 GHz frequency coverage into two bands, low band (1–5 GHz) and high 
band (4–18 GHz). 
 
Multifunction radar systems have also been developed [102]–[105]. These are phased array 
systems that can perform a wide variety of radar functions such as tracking, surveillance, etc. 
[106]. MESAR (Multi-function electronically scanned, adaptive radar) is one such system [103]. 
It provided the functions of surveillance, rapid track initiation and multiple target tracking using 
an array of 918 elements. By the use of multiple, stepped frequency narrow bandwidth 
waveforms over the agile bandwidth of the radar, and processing the returned signals to 
synthesize a high bandwidth response, a range resolution of less than 1 m was obtained. It also 
supported adaptive tracking by having the update rates and waveforms used by an adaptive 
function of the target environment. The APAR multifunction radar used four fixed active phased 
array antennas operating in the X-band with a large frequency coverage to counter the effects of 
multi-path and jamming [105]. Maneuvering targets, or targets that are being engaged, will be 
tracked at a higher update rate than straight-moving targets or non-threatening targets. The 
multifunction capability has also lead to a new set of challenges. The jobs have to be scheduled 
smartly to harness the entire potential of a phased array radar. The scheduling requirements 
generally are specific to each radar system. Different approaches are based on neural networks, 
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decision theoretic, information theory and mathematical programming techniques, including 
linear, nonlinear and dynamic programming [107].  
 
More recently, the concept of cognitive radar was introduced [108]. According to Haykin, there 
are three ingredients that are basic to the constitution of a cognitive radar: (i) intelligent signal 
processing, which builds on learning through interactions of the radar with the surrounding 
environment; (ii) feedback from the receiver to the transmitter, which is a facilitator of 
intelligence; and (iii) preservation of the information content of radar returns, which is realized 
by a Bayesian approach to target detection through tracking. Learning function means the 
cognitive radar has the inherent ability to sense its environment in a continuous manner and also 
refers to the ability of phased-array antennas to electronically scan the environment in a fast way. 
The learning procedure of the cognitive radar mimics the way in which the echo-location bat 
learns from its environment. Cognitive radars can be used in multifunction radars and non-
coherent radar networks. 
 
Bell considered the problem of radar waveform design for optimal detection and target 
information extraction when the targets are modeled as extended radar targets [109]. The first 
problem, that of waveform design for the optimal detection of radar targets that exhibit 
resonance phenomena, involves the design of radar waveforms and receiver-filters that maximize 
the output signal-to-noise ratio at the receiver-filter output under constraints on transmitted 
waveform energy and duration. The second problem deals with the design of radar waveforms 
which maximize the mutual information between an ensemble of extended targets and the 
receiver-filter output. 
 
Bandwidth is a limited and costly resource and is needed by multiple applications. Bandwidth 
sharing between radar and communications was discussed in [110], [111]. Jackson et al. 
investigated the challenges of improving radar spectral efficiency with a view to sharing the 
bandwidth with other users [110]. Cooperative sensing was used to improve the feasibility of 
coexistence of radar and communications in [111]. 
 
Joint multi-modal RF-EO multi-target tracking using adaptive waveform design and control was 
discussed in [112]. A particle filter was used to track targets while incorporating agility to the 
multi-modal tracking system to improve the overall tracking performance. Waveform design for 
the RF sensor was used to increase the probability of detection and decrease the measurement 
error covariance. Multi-target tracking requires the RF sensors to maintain a large enough 
surveillance area to include all targets, while the range resolution is required to be small enough 
to provide accurate range measurements. As we need to consider limitations due to processing 
power in the overall system, there should be tradeoffs between the FOV and range resolution in 
designing the RF waveform, and similarly, between the FOV and angle resolution in adapting the 
EO control. Furthermore, as the RF sensors are distributed, they obtain different range-rate 
measurements from different aspects of the targets. 
 
Most of the cited work has focused on diversifying the functions performed by radar. While 
adaptive waveforms have been researched, the idea of waveforms with different bandwidths has 
been not been considered. The idea of bandwidth optimization for a radar target scene had not 
been addressed. While bandwidth sharing between applications has been explored, no attempt 
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has been made to optimize this process. Most of the scheduling work has focused on phased 
array systems rather than scanning or rotational antenna systems. 
 
The motivation for our research is the need to build a radar which can adapt itself based on the 
target scenario. The goal is to have a radar which is capable of multiple fields of view and selects 
the appropriate one based on the requirement of the current scene. This radar, henceforth referred 
to as multimodal radar, should start off with a low bandwidth waveform and then move to higher 
bandwidths if the situation demands it. This radar should be able operate in a staring mode for 
sensing a target scene and a scanning mode to perform surveillance of a wide field. 
 
The multimodal radar will use only as much bandwidth as required by the target scene. The 
unused bandwidth can be used by other applications. This also opens up the question of how 
much bandwidth is optimal for a target scene. Is it possible to optimize the distribution of 
bandwidth among different applications? With continuously changing target scenarios, the 
bandwidth used up by the radar also changes accordingly leading to a constantly changing 
optimization problem. 
 
We also need to consider the problem of scheduling a multimodal radar. This is slightly different 
from a conventional radar since the multimodal radar requires multiple passes. Also, we consider 
a scanning rotational radar since it was used by us to perform the surveillance of a field. 
 
6.2. Concept of Multimodal Radar 
 
We know that the resolution of radar increases with the increase in bandwidth. However 
bandwidth is a costly resource and sometimes the return from higher resolution is not worth the 
additional cost.  
 
The target scenarios are constantly changing. Hence the optimum bandwidth required to extract 
information about the target scene also changes constantly. Hence, operating a radar at the 
maximum bandwidth at all times can be wasteful and it does not leave any bandwidth for other 
applications that may need it. Hence, we need a radar system which will only use as much 
bandwidth as is required for the target scene.  
 
A multimodal radar along the above lines was first proposed by us. Initially, LRR profiles are 
formed using a low bandwidth waveform of 20 MHz. The detection threshold was arranged so 
that the potential targets would have a high probability of detection. HRR processing is then 
performed on selected range cells in which targets are declared. Thus the multimodal radar has 
the ability to provide target indication with a large range extent and can progressively switch to a 
narrow range extent mode for extracting recognizable target features. A hybrid waveform with a 
total bandwidth of 640 MHz is used for this purpose. This paper developed a simple test-bed 
using direct digital synthesizer to support multimodal requirements. 
 
While Adler put forth the idea of dual resolution modes for radar [98], we carried the concept 
forward to multiple resolution modes where the radar switches from lowest resolution mode to 
the appropriate resolution mode based upon the target scene. References [113] and [114] are 
conference proceedings related to the multimodal radar. 
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6.2.1. Block Diagram nnd System Parameters 
 
Figure 55 shows the block diagram of the multimodal radar and Figure 56 shows the components 
of the multimodal radar. The arbitrary waveform generator (AWG) enables generation of chirp 
waveforms of different bandwidths. The AWG operates at a maximum rate of 4 GSa/sec, making 
it possible to generate waveforms of frequencies up to 2 GHz. The test-bed radar also includes 
amplifiers, transmitting and receiving antennas, and a high-speed oscilloscope for recording the 
received signal. The equipment is shown in Figure 2. The power amplifier has a gain of around 
30 dB and the maximum power output is +28 dBm (630 mW). The low noise amplifier has a 
typical gain of 25 dB and noise figure of 1.5 dB at 1 GHz. The mixer has a conversion loss of 6.5 
dB at operating conditions. The frequency spectrum of the transmitted signal lies within the 
1000–1640 MHz band. Frequency translation is performed to downconvert the received signal 
from the 1000–1640 MHz band to the 300–940 MHz range. The oscilloscope samples and 
records the return signal at 4 GSa/sec. The return is processed by software which decides 
whether further processing is required and what bandwidth waveform must be used for the next 
pass, if any. A workstation with a GPIB controller makes it possible for the software to control 
the AWG and the oscilloscope. Hence, the radar is capable of automatically making decisions 
about additional processing and required bandwidth. The radar system parameters are as shown 
in Table 7. 
 
 

 
Figure 55. Notional Block Diagram of the Multimodal Radar 
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Figure 56. Components and Equipment for the Multimodal Radar 

 

 

Table 7. Radar System Parameters 
 

Parameter Value 
Radar waveform Linear frequency 

modulated pulse 
Radar bandwidth 40 – 640 MHz 
Pulse width 16 μs 
Transmit power Approx.  0.5 W 
Maximum radar 
range 

Approx.  25 m 

 

 

6.2.2. LRR and HRR Profiles 
 
Initially, the AWG transmits a low bandwidth waveform (40 MHz) and sweeps the range extent 
searching for targets. Range resolution R  is given by 2c B  where c  is the speed of light and B  
is the bandwidth. Thus a bandwidth of 40 MHz corresponds to a range resolution of 3.75 m. The 
return is compared to an adaptive range-dependent detection threshold which takes into account 
the fact that the response from targets will weaken as the range increases. This gives us the LRR 
gates with a high probability of the existence of potential targets. The multimodal radar now 
restricts its attention to these LRR gates where the threshold is exceeded. HRR imaging begins 
on these identified LRR gates with the 80-MHz bandwidth waveform (1.875-m resolution). 
Imaging stops if the desired range resolution is obtained on a particular LRR gate to identify 
existing targets, else it continues with the next higher bandwidth (160 MHz → 320 MHz → 640 
MHz). Range resolution is progressively enhanced until a minimum separation (in dB) is met 
between the peaks and its neighboring cells. This minimum separation may be decided based 
upon the required resolution and the expendable bandwidth. A 3-dB separation was used for 
most of the experiments performed by us. A higher separation would obviously lead to more 
passes and higher bandwidth usage by the multimodal radar. Thus, the multimodal radar 
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continues to look at potential targets with narrower range extents until the desired resolution is 
obtained to detect target presence. Table 8 summarizes the various bandwidths used by the 
multimodal radar and their corresponding range resolutions. 
 
 

Table 8. Bandwidth and Resolution for Each Pass of the Multimodal Radar 
 

Pass Bandwidth 
(MHz) 

Resolution 
(m) 

1 40 3.75 
2 80 1.87 
3 160 0.93 
4 320 0.46 
5 640 0.23 

 
 
6.2.3. Field Setup 
 
The measurement set up is shown in Figure 57. Trihedral corner reflectors with square faces of 
length 0.6 m were used as targets whose radar cross section (RCS) was computed as 57.8 m2 
(+17.6 dBsm). We consider a range of 37.5 m which is slightly greater than the maximum radar 
range. This results in 10 LRR gates each of extent of 3.75 m. The RCS values of the targets are 
normalized with respect to the target with the highest RCS. The algorithm continues with higher 
resolution passes until 3-dB separations are obtained between the peaks and their neighboring 
cells.  
 

 
 

Figure 57. Field Measurement Set Up for Multimodal Radar 
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6.2.4. Operation in Staring Mode 
 
Figure 58 shows the flowchart for operation of the multimodal radar. It is assumed that the 
frequency band of 1–1.64 GHz is available for use. A list of LRR gates is formed using a LFM 
waveform of bandwidth 40 MHz. Then the bandwidth is increased in powers of two until the 
desired resolution is obtained for each HRR profile. The simulation may require different 
number of passes for different LRR gates. When the desired resolution is obtained for a LRR 
gate, it is dropped from the list and the sensing continues with the remaining LRR gates. The 
multimodal radar makes efficient use of the spectrum, utilizing lower bandwidths initially, and 
using the higher bandwidths only if required. This leaves the unused bandwidth for use in other 
applications. 
 
 

 
 

Figure 58. Flowchart for Operation of Multimodal Radar. 
 
 
6.2.5. Operation in Scanning Mode 
 
The multimodal radar was also programmed to scan a field of targets. We start detection with a 
low bandwidth waveform. The antennas are mounted on a plate which can rotate in the azimuthal 
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plane.  The idea is to rotate the antenna in small steps of around 15–20°. When a target is 
detected, the radar starts increasing the bandwidth in steps of two until the desired resolution is 
obtained.  The first LRR profile is taken at 0   and subsequent profiles are taken after rotating 
the antennas counter-clockwise each time by a fixed angle, henceforth referred to as one step. 
The LRR profiles are stored to form LRR tracks for each LRR gate. The number of LRR gates 
would be finite, based on the range of the radar. In the LRR tracks, we look for peaks since they 
would signify the presence of a target. Also we would like to use higher bandwidth waveforms 
from the position which is closest to the line joining the center of antennas and the target. For 
these reasons, we keep rotating until a peak is passed and then the antennas are rotated clockwise 
(in the opposite direction) by one step to run the multimodal algorithm on the target scene. Only 
the tracks which showed peaks would be looked at by the higher bandwidth waveforms. Once 
the desired resolution is obtained, the rotate-and-scan-process continues. Figure 59 shows the 
flowchart for operation of the radar when scanning in this fashion.  The entire setup is automated 
so that the scanning process can operate without any user intervention. The antenna angle 
measurements are read using a USB data acquisition device. 
 
 

 
 

Figure 59. Operation of Multimodal Radar when Scanning a Field 
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6.3. Results from Theory and Simulations 
 
6.3.1. Initial Simulation Results 
 
The following show the results obtained using simulations in MATLAB®. These were tried 
before the field experiments were conducted and acted as a preliminary proof of concept of the 
multimodal radar.  We considered a maximum range of 300 m, which results in 80 LRR gates 
each of 3.75m extent. For this simulation, there exist targets as shown in the Table 9. The radar 
cross sections (RCSs) of the targets are normalized with respect to the target with the highest 
RCS. Targets of higher RCS are used at higher range to give sufficient response to be detectable 
by the system. 
 
 

Table 9. Target Scenario 1 
 

Target 
Number 

Range (m) LRR Gate Relative 
RCS 

1 50 14 0.01 
2 52 14 0.01 
3 55 15 0.01 
4 100 27 0.15 
5 103 28 0.15 
6 106 29 0.15 
7 151 41 1 

 
 
These targets are centered around LRR gates 14, 27 and 40. These three LRR gates are observed 
in the LRR profile as seen in Figure 60(a). The LRR resolution is not low enough to distinguish 
between the individual targets with a set. Hence the simulation proceeds to Pass 2 with 80 MHz 
while restricting its focus to these LRR gates. HRR images are generated for each of the selected 
LRR gates. For the HRR profiles, the y-axis is in increments of LRR index, and the x-axis is in 
increments of HRR index. For the bandwidth of 80 MHz, each LRR gate has 2 HRR cells. As the 
bandwidth increases, the number of HRR cells per LRR gate increases. The HRR images are 
normalized and the cell values are in dB. Simulation continues for each of the LRR gates until 
specified amount of separation is obtained between the peaks and their neighboring cells. For 
this particular example, 3 peaks were taken into consideration for each HRR profile. The peaks 
are discarded if they are not significantly higher than the mean of all the cells. During Pass 2, 3-
dB separations between the peaks and neighboring cells are achieved for LRR gate 41 as seen in 
Figure 60(g) and hence the simulation for this gate stops. Meanwhile more resolution is still 
desired for LRR gates 14 and 27 and the simulation for these gates proceeds to Pass 3 with 160 
MHz. The desired resolution for LRR gate 14 is achieved in pass 3 as seen in Figure 60(c) and 
this simulation stops. Meanwhile the simulation for LRR gate 27 continues to Pass 4 with 320 
MHz and finally stops there. Thus the multimodal radar is able to look at different target scenes 
with different resolutions. 
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Figure 60. Imaging Results for a Simulated Target Scenario 1 

 (a) Pass 1. (b) Pass 2, LRR Gate 14. (c) Pass 3, LRR Gate 14. (d) Pass 2, LRR Gate 27. (e) 

Pass 3, LRR Gate 27. (f) Pass 4, LRR Gate 27. (g) Pass 2, LRR Gate 41. (h) Resulting 

resolution for each LRR Gate 

                             
                                       (a)                                                                                      (b) 

                             
                                       (c)                                                                                         (d) 

                            
                                     (e)                                                                                        (f) 

                             
                                       (g)                                                                                         (h) 
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6.3.2. Bandwidth Optimization 
 
6.3.2.1. Optimization Problem 
 
The drawback of the aforementioned method is that it requires multiple passes. Each pass 
consumes certain time and resources and if a target scene is intricate enough to require maximum 
bandwidth, then the multimodal radar utilizes more resources than traditional radar operating at 
that bandwidth. What is desirable is to look at a target scene and arrive at the optimum 
bandwidth required for that target scene and directly use it for pass two of the multimodal radar. 
Thus the cost function for our optimization problem is the bandwidth which is same as the 
optimization variable. The separation between the peak and its neighboring cells can serve as the 
constraints. We would like to have 3-dB separations between the target peak and its neighboring 
cells. This should be adequate to provide a good representation of the range-related variability 
within the target scene. Using more separation may increase the required bandwidth 
significantly. Using lesser separation may not give the required resolution to discern the target 
scene. 
 
The optimization problem for the bandwidth of the multimodal radar can be stated as  
 
minimize          x 
subject to        dBxf 3)(1   
                        dBxf 3)(2   
where              x = bandwidth used for a target scene 
                        f1 = separation between peak and neighboring cell towards the radar 
                       f2 = separation between peak and neighboring cell away from the radar 
 
The above constraints can be rewritten as 03 1  f , 03 2  f . 

 
The above constraints will generally not be convex. As the bandwidth changes, the size and 
position of the range gates change and the values of  1f  and 2f  change in a disorderly fashion. 
However, if the gate containing the peak target is forced to be centered on it, then the above 
constraints can be approximated by convex functions. The accuracy with which the functions can 
represent the above constraints will greatly influence the correctness of the results. 
 
The Lagrangian duality method was used to solve the problem [115]. The basic idea is to take the 
constraints into account by augmenting the objective function with a weighted sum of the 
constraint functions.  
 
 

)3(),(
2

1
i

i
i fxxL  


  (228) 

 
where i is the Lagrange multiplier associated with the ith inequality constraint. The Lagrange 

dual function g is the minimum value of the Lagrangian over x. If D represents the domain of the 
problem, then the dual function [115] is expressed as 
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 ),(inf)(  xLg
Dx

  (229) 

 
The maximum of the dual function g gives a lower bound on the optimum value of x.  For strong 
duality (which holds for convex problems), the maximum of the dual function is exactly equal to 
the optimum value of x. The following shows an example where the constraints are 
approximated by convex quadratic functions.  
 
 

11
2

113 cxbxaf   (230) 
 

22
2

223 cxbxaf   (231) 
 
The constants in the above equations depend on the target scenario. The values for f1 and f2 for 
certain values of bandwidths are found using simulations and then appropriate quadratic 
functions are used to represent the constraints. Putting (229) and (230) in (228), the Lagrangian 
becomes 
 
 )()(),( 22

2
2211

2
11 cxbxacxbxaxxL    (232) 

 
To minimize L over x, set gradient equal to zero. 
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


  
(233) 

 
Plugging (232) in (231) gives the dual function )(g . For a convex problem, the maximum of 
the dual function g gives the optimum value of x.    
 
6.3.2.2. Examples 
 
Target scenario 2 is shown in Table 10. There are two targets separated by 2.5 m. A range 
resolution value of 2.5 m or better will be able to resolve the two targets, but this is only 
assuming that the point spread function is an ideal impulse. In reality, the point spread function is 
usually a Gaussian or a sinc-function having energy beyond its 3-dB point, which may cause a 
larger target to obscure a closer but smaller target. Thus, to be on the safe side, a resolution value 
of half of the minimum target separation is used to ensure capturing targets of all sizes and make 
target identification possible. Thus, in this case, a resolution of about 1.25 m would be ideal. 
Simulations were performed to find sample values for the constraints and they were represented 
by convex quadratic functions. The dual function was obtained and its values for different values 
of Lagrangian multipliers are shown plotted in Figure 61. The maximum of the dual function has 
a value of 97.18 MHz, which corresponds to a range resolution of 1.54 m. This is close to the 
desired 1.25-m resolution, indicating that our technique works well. 
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Table 10. Target Scenario 2 

 
Target 

Number 
Range 

(m) 
Relative 

RCS 
1 8.2 1 
2 10.7 1 

 
 

 
 

Figure 61. Dual Function for Target Scenario 2. 

 
 
Another target scenario 3 is shown in Table 11. The minimum separation is 0.6 m, calling for a 
resolution of about 0.3 m. The maximum of the dual function has a value of 453.3 MHz 
corresponding to a range resolution of 0.33 m, which is again close to the desired value. The dual 
function is shown in Figure 62. The multimodal radar required a bandwidth of 640 MHz for this 
scenario. This is justified since the optimum bandwidth is higher than the Pass 4 bandwidth of 
320 MHz. 
 
 

Table 11. Target Scenario 3 

 
Target 

Number 
Range 

(m) 
Relative 

RCS 
(sq. m) 

1 11.5 1 
2 12.1 1 
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Figure 62. Dual Function for Target Scenario 3. 

 
 
In the above two examples, we see that the maximum occurs at a value where either 1 or  2 is 
zero. This signifies that one of the constraints is dominant and is masking the other constraint. 
Hence a symmetrical target scenario was tried as shown in Table 12. This is similar to target 
scenario 3 except that another target is added to make the scene symmetrical. The optimum 
bandwidth is 97.18 MHz, which is the same as was obtained for target scenario 3. Here the 
maximum occurs at multiple values of pairs of ),( 21  , some of which have both 1  and 2  
non-zero. The dual function for this target scenario is shown in Figure 63. 
 
 

Table 12. Target Scenario 4 

 
Target 

Number 
Range 

(m) 
Relative 

RCS 
 

1 8.2 1 
2 10.7 1 
3 13.2 1 
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Figure 63. Dual Function for Target Scenario 4 

 
 
6.3.3. Bandwidth Requirement for Targets Of Unequal Strength 
 
For the previous discussion, we assumed that the targets were of equal strength. However, if the 
targets vary greatly in strength, a resolution value of half of the target separation is no longer 
accurate. In [116], the common definition used for measuring range resolution for equal strength 
targets was modified for targets of unequal strength. Simulations were carried out to find a 
relationship between the strength difference and the bandwidth requirement. It is shown in 
Figure 64. The ratio of target strengths is expressed in dB. The change in bandwidth is expressed 
as the multiple of bandwidth required for equal strength targets. The relationship is almost linear. 
Hence for targets of unequal strength, the bandwidth optimization problem can be stated as 
 
minimize  x 
subject to  dBxf 3),(1    
where   x is the bandwidth used for a target scene, 

 is the ratio of target strengths in dB ( 0 ) 

1f is the separation in dB between the cell containing the weaker target and the 
neighboring cell towards the stronger target. 
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Figure 64. Dependence Of Bandwidth Required for Resolution on Target Strength Ratio 

 
 
To solve the above problem, we first solve the problem using 0  and arrive at the solution   
using the procedure introduced before. The actual bandwidth req  for the problem can then be 

arrived at using the following expression 
 
 

req

0.5
1 1

10 20

            
   

 (234) 

 
 
Let us consider an arbitrary target shown in Figure 65and calculate the bandwidth required for its 
detection. For each pair of adjacent scattering centers, we take the ratio of the RCS of the 
stronger one to the weaker one to get   in dB. We separately look at the bandwidth required for 
resolving each pair of adjacent scattering centers. Let us first look at the pair ),( 21  . We 
approximate the expected value of bandwidth based on the theory of point spread function. If 1  
and 2  were equal, the resolution required would have been approximately 22,1d . This 

corresponds to a bandwidth of 1,2 1,2c d  . When 1  and 2  are unequal, this can be adjusted to 

be equal to 
 
 1,2

1,2  req
1,2

1
20

c

d




 
  

 
 (235) 

 
Looking at the other pairs of scattering centers, for a total of n scattering centers, the bandwidth 
required can be expressed as 
 
 

, 1
req

(1, 1) , 1

1
20max i i

i n i i
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 (236) 
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Figure 65. Scattering Centers of an Extended Target. 

 
 
When we consider just the pair of adjacent scattering centers, we neglect the effect of other 
scatterers. This can be justified from the fact that if a scatterer was close enough to make a 
substantial contribution, then the bandwidth required to resolve that scatterer from its neighbor 
would be much higher in the expression above. 
 
6.3.4. Observations from Simulations 
 
In this section, we look at certain results obtained from simulations. We also try to understand 
how the number of passes required by the multimodal radar would change with respect to 
external conditions. These results are based on extensive number of repetitions of the multimodal 
algorithm while we change some parameter such as distance between targets and SNR. 
 
6.3.4.1. Receiver Operating Characteristics  
 
Receiver operating characteristic (ROC) of any radar is critical for it analysis. Simulations were 
performed to generate the ROC curves for the multimodal radar. Before we delve into the results, 
let us see how we may define the probability of detection ( dP ) and probability of false alarm for 
a multimodal radar ( fP ).  

 
 Number of targetscorrectlyforecast in everypass

Totalnumber of targetsdP   (237) 

 
 Number of targets that werefalselyforecast in allpasses

Totalnumber of non-target cellsfP   (238) 

 
We generate multiple targets whose ranges are generated randomly. The RCS of targets is 
assumed to be proportional to the forth degree of the range. The multimodal algorithm is run and 
different LRR gates will end the simulation after different number of passes. It may be noted that 

fP  varies depending on the number of passes executed. It is proposed that the fP  for the 

multimodal radar be taken as the average of all of these.  
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Figure 66shows the ROC of the multimodal radar and compares it with the ROC plots of single 
pass radars of various bandwidths. The signal-to-noise ratio (SNR) in the simulations is around 
5–7 dB. As expected, for a given fP , the dP  improves as bandwidth increases. We also note that 

the fP  of the multimodal radar does not deteriorate too rapidly with the increase in the dP , as is 

seen for the single pass radars. This is expected since the existence of multiple passes reduced 
the chances of false alarm as compared to single pass radars. Also, the dP  of the multimodal 
radar is limited by the dP  of its LRR pass. This follows from the fact that the LRR pass is the 
first pass in the multimodal radar and any target missed in this pass goes undetected in the higher 
bandwidth passes which focus only on the LRR gates found earlier. Hence, the dP  of the 
multimodal radar may be improved by selecting an initial LRR pass with higher bandwidth. 
 
 

 
 

Figure 66. ROC of Multimodal Radar. 

 
 
The simulation was repeated with the multimodal radar operated with a LRR pass of 80 MHz 
instead of the usual 40 MHz bandwidth. This is shown in Figure 67.  Here the dP  values of the 
multimodal radar are better than the single pass radar of bandwidth 40 MHz (BW40) but lower 
than the single pass radar of bandwidth 80 MHz (BW80). This improvement in dP is however 
accompanied by worse values of fP , especially at lower detection thresholds. 
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Figure 67. ROC When Multimodal Radar has LRR Pass with 80 MHz Bandwidth. 

 
 
The above simulations were carried out with the RCS values for targets assigned according to 
their range so that all targets would give an approximately uniform return. This condition was 
relaxed to allow for a 10 dB variation in the strength of the targets. The LRR pass had a 
bandwidth of 40 MHz. The result is shown in Figure 68. 
 
 

 

Figure 68. ROC When Targets are Varying In Strength 
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6.3.4.2. Effect of Separation Between Targets 
 
We explore the effect of separation between the targets. We consider two targets and note the 
number of passes required as the separation between them is gradually reduced. The result is 
plotted in Figure 69 where the X-axis is in terms of the highest resolution cell size (0.23 m). The 
number of passes required generally increases as the separation between the targets is reduced. 
Hence, more bandwidth would be utilized as the distance between two targets is reduced. This 
suggests that as the target scene becomes more intricate, the multimodal radar would require a 
greater number of passes. The number of significant peaks observed in Pass 2 HRR images can 
also provide an indication of an intricate target scene. An important consideration is whether an 
attempt should be made to skip some intermediate bandwidths and directly advance to a higher 
bandwidth for such target scenes. Figure 69 shows that when the target separation is too low, the 
multimodal radar took only 2 passes. This happened in Pass 2 because the two targets appeared 
as a single target. 
 
 

 

Figure 69. Variation In Required Number of Passes as a Function of Target Separation 

 
 
6.3.4.3. Effect of SNR 
 
We also simulated the effect of SNR on the performance of the multimodal radar. The target 
scenario was kept the same while the SNR was varied. It was observed that a higher number of 
passes is required to resolve a target scene as the SNR is decreased. The result is plotted in 
Figure 70. This follows from the fact that better separations are obtained between the peaks and 
their neighboring cells at higher SNRs. As the SNR reduces, more passes are required to get 
adequate separation. At high SNRs, the number of passes levels off to a value of two for the 
scenarios under consideration, and starts to dip at an SNR of 15 dB. It is possible that for certain 
scenarios at high SNR values, a single pass may be adequate to resolve the target scene. 
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Figure 70. Variation in Required Number of Passes as a Function of SNR 

 
 
6.3.5. Sharing Bandwidth Between Radar and Communications 
 
Sometimes we have limited bandwidth which needs to be shared among multiple applications. 
Since the multimodal radar can work with different bandwidths, it is well suited to these 
scenarios. We consider the problem of optimally share the bandwidth between radar and 
communications. We shall use multi-objective optimization techniques for this purpose. 
 
6.3.5.1. Determining Radar Priority Using Fuzzy Logic 
 
We need a method to arrive at radar priority before we can apply optimization techniques. We 
use a method similar to [117] for this purpose. The mentioned paper develops an adaptive 
prioritization assignment, fuzzy-reasoning-based algorithm for ranking sectors of surveillance in 
dynamically changing tactical environments. The priority of surveillance sectors was assessed 
using aspects such as rate of detection of new targets and number of threatening targets. For our 
case, the linguistic variables used to determine radar priority are target separation, signal-to-noise 
(SNR) ratio and clutter. The membership functions for these variables are shown in Figure 71. 
The linguistic variable target separation is the fuzzified value of the distance between point 
targets. The distances correspond to the range resolutions of the various bandwidth waveforms 
used by the multimodal radar seen before. Since target separation is the single most important 
factor, this has been designed with more fuzzy values compared to other linguistic variables. 
Clutter is expressed on a normalized scale of 0 to 1. The membership functions for SNR and 
radar priority are pretty straightforward. The fuzzy rules provide a mapping from the input 
linguistic variables to the output of radar priority. We see that target separation features in all the 
rules used by the system. The centroid method is used for defuzzifying the output. 
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The following rules are used by the fuzzy inference system: 
 If target separation is very low, radar priority is high. 
 If target separation is very high, then radar priority is low. 
 If target separation is medium and SNR is low, then radar priority is high. 
 If target separation is medium and clutter is high, then radar priority is high. 

 

 

Figure 71. Membership Functions 

(a) Target separation (b) SNR (c) Normalized clutter (d) Radar priority 

 

 

6.3.5.2. Target Scenario 5 
 
We consider the scene in front of the radar to be divided into 15° wide sectors as shown in 
Figure 72. The surveillance target scenario 5 being considered for bandwidth sharing and 
optimization is shown in Table 13. It is also shown diagrammatically in Figure 73. We start 
scanning from Sector 1 and move towards Sector 12. The communications scenario is assumed 
to be constantly changing and as shown in Table 14 corresponding to the instant when each 
sector is being scanned. 
 
 

 
                                     (a)                                                                                   (b) 

 
                                       (c)                                                                                 (d) 
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Figure 72. Target Space Divided into Sectors 

 
 

Table 13. Target Scenario 5 
Target 
Scene 
Number 

 
(degrees)

Sector Range    
(m) 

Normalized
Clutter  

SNR 
(dB) 

1 
 

30 3 8.2 0.7 
 

8 

30 3 10.7 

2 110 8 11.5 0.5 
 

14 

110 8 12.1 

 

 

Figure 73. Target Scenario 5 

 
 
Using MATLAB fuzzy logic toolbox, we arrive at priorities for radar for surveillance of the 
various sectors. The SNR and normalized clutter for non-target sectors are assumed to be 10 dB 
and 0.5 respectively. The results are shown in Table 15. Now that we have priorities for both 
radar and communications, we can proceed with the multi-objective optimization process. 
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Table 14. Communications Priority 
Sector Communications scenario 

3 Large amount of data needs to 
be transmitted (Priority 0.8) 

8 Medium amount of data needs to 
be transmitted  (Priority 0.5) 

Others Medium amount of data needs to 
be transmitted (Priority 0.4) 

 
 

Table 15. Computed Radar Priority 
Sector Radar priority 

3 0.17 
8 0.82 

Elsewhere 0.13 
 
 
6.3.5.3. Multi-Objective Optimization 
 
Using the calculated values of radar priority and the assumed values for communications 
priority, we perform multi-objective optimization. The total available bandwidth is taken to be 
640 MHz. This has to be shared optimally between radar and communication tasks. 
 
The multi-objective problem can be defined as: 
 
Maximize )]()([)( 21 xFxFxF   
subject to dBxf 3)( 11   

   dBxf 3)( 12   
   MHzxx 64021   

where      ][ 21 xxx   

                1

2

x Bandwidth used for radar

x Bandwidth  used for communications




 

                   
The 3-dB constraints ensure adequate resolution between the radar peak and its neighboring 
cells. The parameters of the problem vary for each sector. Using the aforementioned priorities as 
weights, we arrive at the following objective functions for Sector 3: 
 
 11 17.0)( xxF   

22 82.0)( xxF   (240) 

 
For these parameters, the design space and criterion space are shown in Figure 74. The radar 
resolution constraints effectively place a lower bound on the radar bandwidth. This was 
calculated using the multimodal radar optimization process discussed before.  
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Figure 74. Multi-Objective Optimization Solution for Sector 3 

 
 
Minimizing the Euclidean distance to the utopia point [118], the solution comes out to be: 
 
 

MHz5.516

MHz5.123

2

1




x

x
 (241) 

 
Solving for each of the sectors gives us the solution shown in Figure 75. We see that the 
bandwidth is appropriately allotted based on the requirement of radar target scene and 
communications. Thus the radar is assigned high bandwidth to allow higher resolution for Sector 
8. Communications is assigned high bandwidth in Sector 3 as per the high priority. 
 
 

 
 

Figure 75. Multi-Objective Optimization Solution for the Problem Scenario. 

 
 
6.3.6. Radar Scheduling 
 
Radar scheduling is important to make the best use of available resources. We investigate the 
scheduling of the multimodal radar for surveillance and range tracking. The antennas are rotated 
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using TTL/relay-controlled DC motor. For our analysis, we neglect the radar dwell time, since it 
is negligible compared to the return processing time and time required to rotate the antenna from 
one sector to another. The parameters used for the following simulations are shown in Table 16. 
 

Table 16. Simulation Parameters 

 
Parameter Value (sec) 
Radar return 

processing time 
2 

Time to rotate antenna 
to adjacent sector 

1 

 
 
We maintain a minimum number of visits for targets being tracked while allowing for non-
uniform samples. Tracking using non-uniform sampling has been investigated before in [119], 
[120]. We assume slow moving targets which continue to remain in the same sectors for the 
duration of the simulation. We differentiate between scenarios having targets in the center and 
targets on the edges.  
 
6.3.6.1. Targets in the Center 
 
For such target scenarios, the algorithm shown in Figure 76 is used. Partial passes are used close 
to the center to increase the number of visits to sectors with targets. Only the sectors with targets 
are sampled in passes shown with dotted arcs. All sectors are sampled in passes shown with full 
arcs. After one complete cycle, the number of visits is measured for the sectors with targets and 
the number of partial passes between full passes is increased if required.  Surveillance is 
performed for the sectors with no initial targets. 
 

 

Figure 76. Scheduling Algorithm for Scenarios with Targets Concentrated in Center 

(Dots Represent Targets) 

 
 
We used the particle filter algorithm to compare the tracking performance of our scheduling 
algorithms. 500 particles are used for the simulation results that follow. They are initially 
distributed uniformly over a range of 50 m. Periodically, the low weight particles are discarded 
and replaced with new particles which are distributed in range; then the weights are equalized. 
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With three partial passes between each complete pass, the number of scheduled visits for all 
sectors and tracking results for sector 8 are shown in Figure 77 and Figure 78 respectively. We 
see that this algorithm gives us good number of visits for sectors being tracked. We also get very 
low tracking error even when there are abrupt changes in target direction as shown in Figure 78. 
We compare the results with a uniform algorithm which only makes complete passes and scans 
every sector in each direction. The results for this algorithm are shown in Figure 79 and Figure 
80 respectively. Here we see that there is substantial error when the target motion has abrupt 
changes and it takes 3–4 visits for the tracker to correct itself. 
 

 
 

Figure 77. Scheduling Results with 3 Partial Passes Between Complete Passes 

 
 

 
 

Figure 78. Tracking Results for Sector 8 with 3 Partial Passes Between Complete Passes. 
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Figure 79. Scheduling Results with Complete Passes Only 

 
 

 
 

Figure 80. Tracking Results with Complete Passes Only (Every Sector) 

 
 
6.3.6.2. Targets on the Edges 
 
For such target scenarios, the algorithm shown in Figure 81(a) is used. Partial passes are 
employed close to the edges to increase the number of tasks scheduled for sectors with targets. 
Only the sectors with targets are sampled in passes shown with dotted arcs. All sectors are 
sampled in passes shown with full arcs. After one complete cycle, the number of visits is 
measured for the sectors with targets and the number of partial passes between full passes is 
increased if required. For targets in sectors 2, 3, 10, and 11, the number of visits for 1000 
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seconds is as shown in Figure 81(b) when there are two partial passes between each complete 
pass. 
 
 

 
 

Figure 81. Scheduling for Scenarios with Targets Concentrated at the Edges 

 
 
From Figure 81(b), we observe that we achieve higher update rates for the sectors containing the 
targets. 
 
6.4. Field Measurement Results 
 
6.4.1. Field Measurement Results in Staring Mode 
 
Target Scenario 6 
 
Table 17 shows a target scenario 6 with 1 target. The LRR pass identifies LRR Gates 4 and 5 for 
further processing as shown in Figure 82(a). When we take HRR profiles for a particular LRR 
gate, we also include its neighboring gates to get a good idea of the target scene. Then Pass 2 is 
executed and now we get 3-dB separation between the peak and its neighboring gates as shown 
in Figure 82(b). Hence, no further passes are required. 
 
 

Table 17. Target Scenario 6 

 
Target 

Number 
Range 

(m) 
LRR 
Gate 

Relative 
RCS 

1 15.2 5 1 
 
 

 

(a)  Scheduling Algorithm                         (b) Scheduling Results 

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Sector

T
as

ks
 s

ch
ed

ul
ed

 p
er

 1
00

0 
se

c

Approved for public release; distribution unlimited



   

  141  
 

 

 

Figure 82. Imaging Results for Target Scenario 6 

(a) Pass 1. (b) Pass 2, LRR Gate 4 

 
 
Target Scenario 7 
 
Table 18 shows a target scenario 7 with 2 targets. The LRR pass identifies LRR Gates 4 and 6 
for further processing. For LRR gate 4, 3 dB separation is not obtained for LRR gate 4 as seen in 
Figure 83(b). Hence algorithm proceeds to Pass 3, where the separation is achieved and the 
algorithm stops. This is shown in Figure 83(c). Similarly the algorithm also stops at Pass 3 for 
LRR gate 6 as seen in Figure 83(e). These two targets are far apart and it may be argued that they 
should have been resolved adequately by the 80 MHz waveform itself. However, if a target is 
present on the boundary of a range gate, its response will not be contained in a single gate, 
leading to another pass. 
 

Table 18. Target Scenario 7 

 
Target 

Number 
Range 

(m) 
LRR 
Gate 

Relative 
RCS 

1 11.5 4 1 
2 21.1 6 3 

 
 

 
                                         (a)                                                                               (b) 
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Figure 83. Imaging Results for Target Scenario 7 

(a) Pass 1. (b) Pass 2, LRR Gate 4. (c) Pass 3, LRR Gate 4. (d) Pass 2, LRR Gate 6. (e) Pass 

3, LRR Gate 6 

 

 

Target Scenario 8 

 

Table 19 shows a target scenario 8 with 3 targets. The LRR pass correctly identifies LRR Gates 3 

and 5 for further processing. The multimodal algorithm runs and stops at Pass 3 for LRR Gate 3 

and Pass 2 for LRR Gate 5, as shown in Figure 84. LRR Gate 3 contains 2 targets separated by 

2.5 m. A resolution of about 1.25 m would be ideal. The multimodal radar required a bandwidth 

of 160 MHz for this target separation which corresponds to a resolution of 0.93 m. This is close 

to the expected result. Since 80 MHz is not sufficient to resolve these targets, we do not see 

 
                                          (a)                                                                              (b) 

 
                                           (c)                                                                               (d) 

 
                                                                                 (e) 
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sufficient separation between cells in Pass 2 in Figure 84(b). Pass 3 gives us 3-dB separation as 

seen in Figure 84(c) and the algorithm stops. LRR Gate 5 contained a single target which 

resulted in the multimodal radar stopping at the first higher resolution pass of 80 MHz as shown 

in Figure 84(d). 

 

Table 19. Target Scenario 8 

 

Target 

Number 

Range 

(m) 

LRR 

Gate 

Relative 

RCS 

1 8.2 3 1 

2 10.7 3 1 

3 15.8 5 1 

 

 

 

Figure 84. Imaging Results for Target Scenario 8 

(a) Pass 1. (b) Pass 2, LRR Gate 3. (c) Pass 3, LRR Gate 3. (d) Pass 2, LRR Gate 5 
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Target Scenario 9 
 
Table 20 shows a target scenario 9 with three targets. A relative RCS of 4 (target number 3) 
indicates that four corner reflectors were placed side-by-side in that particular range cell. Here 
the algorithm stops at Pass 5 for LRR Gate 4 and Pass 3 for LRR Gate 7, as shown in Figure 85. 
The targets in LRR Gate 4 are separated by 0.6 m. Hence, in this case, a resolution of about 0.3 
m would be ideal. The multimodal algorithm uses the entire bandwidth of 640 MHz 
corresponding to 0.23-m resolution for this target scene. This is close to the expected result. As 
seen in Figure 85(b) to Figure 85(d), none of the HRR passes from 2 to 4 is able to resolve these 
targets. HRR pass 5 clearly discerns the two targets in Figure 85(e). For LRR Gate 7, we had 
multiple corner reflectors placed at the same range to act as a single target. The radar required a 
bandwidth of 160 MHz for resolving this target as shown in Figure 85(d). While this is more 
than the expected bandwidth of 80 MHz for a single target, it may be due to the fact that our 
corner reflectors are not point targets and may happen to be split across two gates. 
 
 

Table 20. Target Scenario 9 

 
Target 

Number 
Range 

(m) 
LRR 

Gate 
Relative 
RCS 

1 11.5 4 1 
2 12.1 4 1 
3 22.1 7 4 
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Figure 85. Imaging Results for Target Scenario 9 

(a) Pass 1. (b) Pass 2, LRR Gate 4. (c) Pass 3, LRR Gate 4. (d) Pass 4, LRR Gate 4. (e) Pass 

5, LRR Gate 4. (f) Pass 2, LRR Gate 7. (g) Pass 3, LRR Gate 7 
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Target Scenario 10 
 
Table 21  shows a target scenario 10 with four targets. A relative RCS of 4 (target number 3) 
indicates that four corner reflectors were placed side-by-side in that particular range cell. Here 
the algorithm stops at Pass 2 for LRR Gate 3, Pass 5 for LRR Gate 5 and Pass 3 for LRR Gate 7 
as shown in Figure 86. The targets in LRR Gate 5 are separated by 0.6 m. Hence, in this case, a 
resolution of about 0.3 m would be ideal. The multimodal algorithm uses the entire bandwidth of 
640 MHz corresponding to 0.23-m resolution for this target scene. This is close to the expected 
result. As seen in Figure 86(c) to Figure 86(e), none of the HRR passes from 2 to 4 is able to 
resolve these targets. HRR pass 5 clearly discerns the two targets in Figure 86(f). For the targets 
in LRR Gates 3 and 7, the algorithm stops at pass 2 and pass 3 respectively. 
 
 

Table 21. Target Scenario 10 
 

Target 
Number 

Range 
(m) 

LRR 
Gate 

Relative 
RCS 

1 9.7 3 1 
2 15.2 5 1 
3 15.8 5 1 
4 22.4 7 4 
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Figure 86. Imaging Results for Target Scenario 10 

(a) Pass 1. (b) Pass 2, LRR Gate 3. (c) Pass 2, LRR Gate 5. (d) Pass 3, LRR Gate 5. (e) Pass 

4, LRR Gate 5. (f) Pass 5, LRR Gate 5. (g) Pass 2, LRR Gate 7. (h) Pass 3, LRR Gate 7 

 
(a)                                                                           (b) 

 
(c)                                                                            (d) 

 
(e)                                                                              (f) 

   
(g)                                                                                 (h) 
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6.4.2. Field Measurement Results in Scanning Mode 
 
Measurements were also taken for scenarios where multiple target scenes are laid out in 
azimuthal fashion. 
 
Target Scenario 11 

 

Table 22 lists a target scenario 11 consisting of 2 target scenes. It is shown diagrammatically in 
Figure 87(a). LRR profiles are taken while the antennas are rotated with a step-size of 15°. The 
targets are correctly picked out from the LRR tracks and the multimodal algorithm is applied to 
these. The HRR images for these target scenes are shown in Figure 87. For target scene 1, LRR 
Gate 3 contains 2 targets separated by 1 m. HRR passes 2 and 3 are not able to resolve these 
targets, as shown in Figure 87(b) and 33(c). However, the two targets are discerned in HRR 
passes 4 and 5 in Figure 87(d) and 33(e). For target scene 2, HRR pass 2 is able to resolve the 
single target in LRR gate 5, as shown in Figure 87(f). This illustrates how the multimodal radar 
can be used to scan an area for targets and use only as much bandwidth as absolutely required. 
 

 

Table 22. Target Scenario 11 
 

Target 
Scene 

Number 


(degrees)

Range
(m) 

LRR 
Gate 

Relative 
RCS 

1 
 

40 8.5 3 2 
45 9.5 3 2 

2 140 15.8 5 4 
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 Figure 87. HRR Images for Target Scenario 11 

(a) Diagrammatic representation. (b) Pass 2, Target scene 1. (c) Pass 3, Target scene 1. (d) 

Pass 4, Target scene 1. (e) Pass 5, Target scene 1. (f) Pass 2, Target scene 2 

 
(a)                                                                           (b) 

 
(c)                                                                            (d) 

 
(e)                                                                              (f) 
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Target Scenario 12 
 
Table 23 describes a target scenario 12 consisting of 3 target scenes. It is shown 
diagrammatically in Figure 88(a). Target scene 1 consists of a single target and is resolved by 
pass 2 as shown in Figure 88(b). Target scene 2 consists of 2 targets separated by 0.9 m. HRR 
pass 2 is not able to resolve these targets as seen is Figure 88(c). These 2 targets are discerned in 
Pass 3 as shown in Figure 88(d). Target scene 3 has one target each in LRR Gate 3 and 5. The 
target in LRR Gate 3 is resolved in Pass 2 as shown in Figure 88(e). The target in LRR Gate 5 in 
resolved in Pass 3 as shown in Figure 88(g). This again illustrates how the multimodal radar can 
be used for surveillance using low bandwidth waveform, switching to higher bandwidth 
waveforms when targets are detected. 
 
 

Table 23. Target Scenario 12 

 
Target 
Scene 

Number 


(degrees)

Range
(m) 

LRR 
Gate 

Relative 
RCS 

1 30 8.2 3 1 
2 75 11.3 4 1 

80 12.2 4 1 
3 145 8.2 3 1 

150 15.2 5 2 
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Figure 88. HRR Images for Target Scenario 12 

(a) Diagrammatic representation. (b) Pass 2, Target scene 1. (c) Pass 2, Target scene 2. (d) 

Pass 3, Target scene 2. (e) Pass 2, Target scene 3, LRR Gate 3. (f) Pass 2, Target scene 3, 

LRR Gate 5. (g) Pass 3, Target scene 3, LRR Gate 5 
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6.5. Conclusions 
 
The methodology of a multimodal radar system with progressive resolution enhancement is 
described.  This radar makes it possible to look at different target scenes with the appropriate 
bandwidth required to resolve the target features. It starts off with a view with lower resolution 
and stops when the appropriate resolution required for the target scene is reached. The saved 
bandwidth can be made available for use by other applications. It can also operate in scanning 
mode to provide surveillance capability over a wide area using a low bandwidth waveform and 
switching to other waveforms when required. The proof of concept was explained with scenarios 
for multimodal radar usage and simulation results.  
 
The multimodal system radar system was built using standard components, arbitrary waveform 
generator and a digital oscilloscope. The waveform generator made it possible to use multiple 
waveforms. All the processing for multimodal algorithm was carried out using LabView and 
MATLAB. Surveillance function was enabled with the help of an antenna positioner and 
controller. 
 
Experimental results were provided to give a demonstration of the multimodal radar algorithm in 
operation. For staring mode, we saw that the multimodal radar uses variable bandwidth based on 
the target scene. The scanning mode showed higher bandwidth usage only when targets are 
encountered. Thus, the system uses a field of view appropriate for the target scene. 
 
Simulation results were shown to provide further insight into the performance characteristics of 
the radar.  The ROC curves showed the superior performance of multimodal radar in terms of its 
lower probability of false alarm at higher values of probability of detection. We also saw the 
impact of a LRR pass of higher bandwidth. We also saw that the number of required passes 
increases as the target scene becomes more intricate or the SNR decreases. 
 
A theoretical method was discussed to optimize the bandwidth required by the multimodal radar. 
Example scenarios were taken into consideration and it was shown that the results are close to 
the ones observed in the field. This further underscores the idea that each individual target scene 
requires an optimum bandwidth and there is not much gained by expending any additional 
bandwidth. 
 
Several other considerations also come to mind. For example, there may be an overriding need to 
reserve a significant portion of the available spectrum for other applications, such as essential 
communications. In such a case, there may be an upper limit to the bandwidth available for the 
radar. In addition, if a specific smaller portion of the spectrum needs to be reserved for alternate 
applications, the radar may need to search for available contiguous spectrum for its operation 
within the entire band while avoiding the reserved subband. These issues require additional 
study. With the advent of software-defined RF technology, future multimodal radar systems can 
be designed to be reconfigurable, and therefore highly flexible and adaptive [121].  
 
The concept of bandwidth sharing between multimodal radar and communications was 
introduced. The radar priority was calculated based on the target scene using fuzzy logic. Multi-
objective optimization techniques were used to optimally share the bandwidth between radar and 
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communications. With the available bandwidth being scarce and costly, this is can be a great 
advantage for a multifunction system. Multiple applications can share the bandwidth and 
improve the total productivity of the system.  Further study may be done into optimal allocation 
of bandwidth across different applications. It is also possible that one may not want to use up the 
entire bandwidth. Some bandwidth can be kept in reserve to be used when needed. Scheduling 
algorithms were suggested for the multimodal radar to increase the number of tasks scheduled 
for tracking and surveillance for specific target scenarios. Simulation results were provided to 
demonstrate the performance of these algorithms. 
 
As RF systems become smaller and lighter to fit within smaller platforms, there is a need to 
integrate several functions into the same package for efficiency, such as surveillance, 
communications, tracking, and telemetry. In addition, bandwidth is a scarce commodity and must 
be managed wisely for optimal performance. Our research addresses the bandwidth management 
problem which leads to optimal scheduling of multifunctional RF systems. 
 
Unambiguous target recognition is accomplished when all of the unique target features can be 
detected and matched against known templates. Separating the unique target scattering centers 
requires adequate bandwidth, which is inversely proportional to the separation between the 
scattering centers. Closely spaced target features require higher bandwidth compared to a target 
whose unique scattering centers are spaced far apart. In most cases, the highest bandwidth is 
employed, without assessing whether lower bandwidths may suffice for the specific target being 
surveilled. This wastes precious bandwidth which could be used for other applications. We have 
developed a methodology to start with a lower bandwidth and progressively increase the 
bandwidth until the target is clearly identified, at which point we do not increase the bandwidth 
further. Our approach is applicable to both staring and scanning mode scenarios and has been 
tested via simulation and experiments over a wide range of target scenarios. Freeing up 
unnecessary bandwidth can permit the multifunctional RF system to take advantage of the 
additional bandwidth for other important functions. 
 
An important related issue is the allocation of bandwidth in multifunctional RF systems based 
upon priorities assigned by the commander. In most cases, a total bandwidth is assigned to the 
mission, and depending upon the priorities for each task, the bandwidth allocation may need to 
change dynamically for optimal performance. We have implemented a robust approach that 
employs fuzzy logic to perform multi-objective optimization and allocate bandwidth for different 
competing tasks, such as radar and communication. 
 
In addition, we have also developed a strategy to optimize the tracking of targets by appropriate 
scheduling. For example, as the radar antenna scans in azimuth and identifies targets in angular 
sectors, the optimum solution is to perform tracking only over the sectors containing the targets. 
An approach has been developed to optimize the tracking instead of continuously tracking over 
all sectors, irrespective of target presence or absence.  This technique will help higher frequency 
of target illumination and more revisits to ensure robust tracking. 
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7. Conclusions 
 
The Integrated Multi-Modal RF Sensing project under the Multi-Yield Radio Frequency 
Countermeasures Investigations and Development contract for the AFRL Sensors Directorate 
performed basic research to examine key parameters of integrated multi-modal RF sensor design 
and algorithm development.  Four Principal Investigators representing four different universities 
executed the program, with each PI being responsible for distinct but interrelated research areas.  
Dr. Muralidhar Rangaswamy of the Radio Frequency Exploitation Branch of the AFRL Sensors 
Directorate provided technical direction and collaboration throughout the project. 
 
Dr. Steven Kay from the University of Rhode Island was responsible for researching the 
Statistical Framework for the overall IMMRF project. His research team investigated the 
problem of sensor integration to combine all the available information in a multi-sensor setting 
from a statistical standpoint. They studied the cases when the probability density function (PDF) 
is not completely known and proposed a novel method of constructing the joint PDF of the 
measurements from all the sensors based on the exponentially embedded family (EEF). The 
constructed PDF only requires knowledge of the joint PDF under a reference hypothesis and 
hence is useful in many practical cases. Examples and simulation results showed that the method 
requires less information compared to existing methods but attains comparable detection and 
classification performance. Additionally, the EEF can be used for robust signal detection. 
 
Dr. Lee Swindlehurst from the University of California, Irvine led research into Algorithm 
Development and Implementation for the IMMRF project. His team addressed the problem of 
using multiple, spatially distributed, adaptive multi-modal sensors for multiple target tracking 
and data association. When left unmodeled or ignored, inherent field-of-view (FOV) limitations 
for each mode and sensor present a challenge to accurate tracking, appropriate sensor 
management, and system robustness. They proposed a relatively simple variance-penalty 
oriented modeling solution that effectively presents the FOV as a new design parameter. A novel 
closed-loop adaptive mode-parameter selection algorithm incorporating this penalty model was 
studied for use in both ideal and cluttered sensing environments. Simulations demonstrate the 
necessity and benefits of the proposed model and algorithm in a variety of tracking and 
association contexts as compared to completely unmodeled/non-adaptive methods. 
 
Dr. Antonia Papandreou-Suppappola from the Arizona State University investigated Tracking 
and Waveform Agility.  Her team investigated the asymmetrical multi-modal sensing system for 
tracking low observable targets using RF and EO sensors, and developed the particle filter based 
recursive track before detect (TBD) algorithm for joint RF-EO multi-modal tracking to avoid 
loss of information caused by matched filter thresholding at low SNR. The TBD uses 
unthresholded matched filter measurements to estimate the target state, and performs tracking 
while detecting.  They integrated the TBD approach with waveform-agile sensing as the TBD 
can directly incorporate the transmit waveform in its formualtion. This allows for an adaptive 
selection of the transmit waveform at each time step without any restrictions on the SNR level. 
Her team also integrated the embedded exponential family (EEF) approach into the TBD 
algorithm in order to approximate joint distributions of dependent RF-EO measurements to 
further improve tracking performance, and used the IMMRF radar Test-Bed to evaluate the 
proposed algorithms. They also extended the TBD tracker to low observable multiple targets. 
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The new algorithm estimates the joint posterior probability density of all the target trajectories 
while keeping track of targets entering and leaving the noisy radar scene under observation using 
multiple modes. Multiple target tracking was investigated using the probability hypothesis 
density filter (PHDF) and integrated with adaptive waveform design. 
 
Dr. Ram Narayanan from the Pennsylvania State University led the Radar Test-Bed 
Development efforts.  His research team first studied the underlying methodology of an adaptive 
multimodal radar sensor that is capable of progressively varying its range resolution depending 
upon target scattering features. They developed a multimodal radar test-bed that enables the 
generation of linear frequency modulated waveforms of various bandwidths for achieving the 
optimum resolution to image the target. A theoretical method to optimize the bandwidth used by 
the radar was also developed. Novel bandwidth sharing scenarios between radar and 
communications functionalities were developed in which the surveillance space is divided into 
sectors and fuzzy logic is used to arrive at priorities for each sector. Priority for radar is based on 
separation between targets, signal to noise ratio, and existence of clutter. Finally, they considered 
the problem of optimal scheduling between tracking and surveillance for the multimodal radar, 
and developed algorithms for maximizing the track update rate and surveillance rate. 
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1-D One-Dimensional 
2-D Two-Dimensional 
3-D  Three-Dimensional 
AF Ambiguity Function 

AMRFS Advanced Multifunction RF System 
AWG Arbitrary Waveform Generator 
CBRN Chemical, Biological, Radiological, And Nuclear 
CDF Cumulative Distribution Function 
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EEF Exponentially Embedded Family 
EEF Embedded Exponential Family 

EM Electromagnetic 
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GLRT Generalized Likelihood Ratio Test 
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MTT Multiple Target Tracking 
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TBD Track-Before-Detect 
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